
Solve the equation $24{{x}^{3}}-14{{x}^{2}}-63x+\lambda =0$ , one root being double of another. Hence find the value(s) of $\lambda $ .
Answer
467.4k+ views
Hint: To solve the equation $24{{x}^{3}}-14{{x}^{2}}-63x+\lambda =0$ and find the value of $\lambda $ , we will consider the roots to be $\alpha ,\beta $ and $\gamma $ . From the given condition, we will assume $\beta =2\alpha $ . Using the properties of roots of cubic equation, we will get three equations $\alpha +\beta +\gamma =\dfrac{14}{24}$ , $\alpha \beta \gamma =\dfrac{-\lambda }{24}$ and $\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{-63}{24}$ . We have to substitute the given condition in these equations and solve to get the values of the roots and $\lambda $ .
Complete step by step solution:
We have to solve the equation $24{{x}^{3}}-14{{x}^{2}}-63x+\lambda =0$ and find the value of $\lambda $ . Let us consider the roots to be $\alpha ,\beta $ and $\gamma $ . We know that the sum of roots in a cubic equation of the form $a{{x}^{3}}+b{{x}^{2}}+cx+d=0$ is given as
$\alpha +\beta +\gamma =\dfrac{-b}{a}$
Here, we can see that $a=24,b=-14,c=-63$ and $d=\lambda $ .
$\begin{align}
& \Rightarrow \alpha +\beta +\gamma =\dfrac{-\left( -14 \right)}{24} \\
& \Rightarrow \alpha +\beta +\gamma =\dfrac{14}{24} \\
\end{align}$
Let us cancel the common factor of 2 from the RHS.
$\Rightarrow \alpha +\beta +\gamma =\dfrac{7}{12}...\left( i \right)$
We are given that one root is double of another. Let us consider $\beta $ to be the double of $\alpha $
$\Rightarrow \beta =2\alpha ...\left( ii \right)$
Let us substitute the above value in the equation (i).
$\begin{align}
& \Rightarrow \alpha +2\alpha +\gamma =\dfrac{7}{12} \\
& \Rightarrow 3\alpha +\gamma =\dfrac{7}{12}...\left( iii \right) \\
\end{align}$
We know that the product of the roots of cubic equation is given as
$\alpha \beta \gamma =\dfrac{-d}{a}$
Let us substitute the values.
$\Rightarrow \alpha \beta \gamma =\dfrac{-\lambda }{24}$
Let us substitute (ii) in the above equation.
$\begin{align}
& \Rightarrow \alpha \cdot 2\alpha \cdot \gamma =\dfrac{-\lambda }{24} \\
& \Rightarrow 2{{\alpha }^{2}}\gamma =\dfrac{-\lambda }{24} \\
\end{align}$
Let us take 2 from LHS to the RHS.
$\begin{align}
& \Rightarrow {{\alpha }^{2}}\gamma =\dfrac{-\lambda }{24\times 2} \\
& \Rightarrow {{\alpha }^{2}}\gamma =\dfrac{-\lambda }{48}...\left( iv \right) \\
\end{align}$
We know that the sum of the products of the roots of cubic equation is given by
$\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a}$ .
Let us substitute the values in the above equation.
$\Rightarrow \alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{-63}{24}$
Let us cancel the common factor 3 from the RHS.
$\Rightarrow \alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{-21}{8}$
Now, we have to substitute (ii) in the above equation.
$\begin{align}
& \Rightarrow 2{{\alpha }^{2}}+2\alpha \gamma +\gamma \alpha =\dfrac{-21}{8} \\
& \Rightarrow 2{{\alpha }^{2}}+3\alpha \gamma =\dfrac{-21}{8}...\left( v \right) \\
\end{align}$
Let us solve equation (iii) and (v). Let us use a substitution method. From equation (iii), we can find the value of $\gamma $ as follows.
$\Rightarrow 3\alpha +\gamma =\dfrac{7}{12}$
Let us take $3\alpha $ to the RHS.
$\Rightarrow \gamma =\dfrac{7}{12}-3\alpha ...\left( vi \right)$
Let us substitute equation (vi) in equation (v).
$\Rightarrow 2{{\alpha }^{2}}+3\alpha \left( \dfrac{7}{12}-3\alpha \right)=\dfrac{-21}{8}$
We have to apply distributive property on the second term of the LHS.
\[\Rightarrow 2{{\alpha }^{2}}+\dfrac{21\alpha }{12}-9{{\alpha }^{2}}=\dfrac{-21}{8}\]
We have to solve the LHS.
\[\begin{align}
& \Rightarrow -7{{\alpha }^{2}}+\dfrac{21\alpha }{12}=\dfrac{-21}{8} \\
& \Rightarrow -7{{\alpha }^{2}}+\dfrac{7\alpha }{4}=\dfrac{-21}{8} \\
\end{align}\]
Let us take the common term 7 outside from the LHS.
\[\Rightarrow 7\left( -{{\alpha }^{2}}+\dfrac{\alpha }{4} \right)=\dfrac{-21}{8}\]
We can take 7 to the RHS.
\[\Rightarrow -{{\alpha }^{2}}+\dfrac{\alpha }{4}=\dfrac{-21}{8\times 7}\]
Let us cancel the common factor 7 from the RHS.
\[\Rightarrow -{{\alpha }^{2}}+\dfrac{\alpha }{4}=\dfrac{-3}{8}\]
We have to simplify the LHS by taking the LCM and solving.
\[\Rightarrow \dfrac{-4{{\alpha }^{2}}+\alpha }{4}=\dfrac{-3}{8}\]
Let us take 4 from the denominator of the LHS to the RHS.
\[\begin{align}
& \Rightarrow -4{{\alpha }^{2}}+\alpha =\dfrac{-3\times 4}{8} \\
& \Rightarrow -4{{\alpha }^{2}}+\alpha =\dfrac{-3}{2} \\
\end{align}\]
Let us take the RHS to the LHS.
\[\Rightarrow -4{{\alpha }^{2}}+\alpha +\dfrac{3}{2}=0\]
Now, we have to solve this equation. The above equation is of the form $a{{x}^{2}}+bx+c=0$ . We have to use the quadratic formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
$\begin{align}
& \Rightarrow \alpha =\dfrac{-1\pm \sqrt{{{1}^{2}}-4\times -4\times \dfrac{3}{2}}}{2\times -4} \\
& \Rightarrow \alpha =\dfrac{-1\pm \sqrt{1-4\times -2\times 3}}{-8} \\
& \Rightarrow \alpha =\dfrac{-1\pm \sqrt{1+24}}{-8} \\
& \Rightarrow \alpha =\dfrac{-1\pm \sqrt{25}}{-8} \\
& \Rightarrow \alpha =\dfrac{-1\pm 5}{-8} \\
\end{align}$
Let us split the signs.
$\Rightarrow \alpha =\dfrac{-1+5}{-8},\alpha =\dfrac{-1-5}{-8}$
Now, let us simplify the above expression.
$\begin{align}
& \Rightarrow \alpha =\dfrac{4}{-8},\alpha =\dfrac{-6}{-8} \\
& \Rightarrow \alpha =\dfrac{-1}{2},\alpha =\dfrac{3}{4} \\
\end{align}$
Now, we have obtained two values of $\alpha $ . Let us substitute each of these values in equation (vi).
Let us consider $\alpha =\dfrac{-1}{2}$ .
$\begin{align}
& \Rightarrow \gamma =\dfrac{7}{12}-3\times \dfrac{-1}{2} \\
& \Rightarrow \gamma =\dfrac{7}{12}+\dfrac{3}{2} \\
\end{align}$
We have to take the LCM and simplify.
$\Rightarrow \gamma =\dfrac{7}{12}+\dfrac{18}{12}=\dfrac{7+18}{12}=\dfrac{25}{12}$
Let us find $\beta $ from equation (ii).
$\Rightarrow \beta =2\times \dfrac{-1}{2}=-1$
Now, we have to find $\lambda $ using equation (iv).
$\begin{align}
& \Rightarrow {{\left( \dfrac{-1}{2} \right)}^{2}}\left( \dfrac{25}{12} \right)=\dfrac{-\lambda }{48} \\
& \Rightarrow \dfrac{1}{4}\times \left( \dfrac{25}{12} \right)=\dfrac{-\lambda }{48} \\
\end{align}$
Let us take 48 to the LHS.
$\Rightarrow -\lambda =\dfrac{1}{4}\times \dfrac{25}{12}\times 48$
Let us cancel the common factor 4.
$\Rightarrow -\lambda =\dfrac{25}{12}\times 12$
We have to cancel the common factor 12.
$\begin{align}
& \Rightarrow -\lambda =25 \\
& \Rightarrow \lambda =-25 \\
\end{align}$
Therefore, we found that $\alpha =\dfrac{-1}{2}$ , $\beta =-1,\gamma =\dfrac{25}{12},\lambda =-25$ .
Now, let us consider $\alpha =\dfrac{3}{4}$ .
Using equation (ii), we will get
$\beta =2\times \dfrac{3}{4}=\dfrac{3}{2}$
Let us substitute this value of $\alpha $ in equation (iv).
$\begin{align}
& \Rightarrow \gamma =\dfrac{7}{12}-3\times \dfrac{3}{4} \\
& \Rightarrow \gamma =\dfrac{7}{12}-\dfrac{9}{4} \\
\end{align}$
Let us take the LCM.
$\begin{align}
& \Rightarrow \gamma =\dfrac{7}{12}-\dfrac{27}{12}=\dfrac{7-27}{12} \\
& \Rightarrow \gamma =\dfrac{-20}{12} \\
\end{align}$
Let us cancel the common factor 4.
$\Rightarrow \gamma =\dfrac{-5}{3}$
Now, we have to substitute these values in equation (iv).
\[\begin{align}
& \Rightarrow {{\left( \dfrac{3}{4} \right)}^{2}}\left( \dfrac{-5}{3} \right)=\dfrac{-\lambda }{48} \\
& \Rightarrow \dfrac{9}{16}\times \dfrac{-5}{3}=\dfrac{-\lambda }{48} \\
\end{align}\]
Let us cancel the common factor 3.
\[\Rightarrow \dfrac{3}{16}\times -5=\dfrac{-\lambda }{48}\]
We have to take 48 from RHS to the LHS.
\[\Rightarrow \dfrac{3}{16}\times -5\times 48=-\lambda \]
Let us cancel the common factor 16.
\[\begin{align}
& \Rightarrow 3\times -5\times 3=-\lambda \\
& \Rightarrow -\lambda =-45 \\
& \Rightarrow \lambda =45 \\
\end{align}\]
Hence, we found that $\alpha =\dfrac{3}{4},\beta =\dfrac{3}{2},\gamma =\dfrac{-5}{3},\lambda =45$ .
Therefore, the solutions of $24{{x}^{3}}-14{{x}^{2}}-63x+\lambda =0$ are \[x=\dfrac{-1}{2},-1,\dfrac{25}{12}\] when \[\lambda =-25\] and $x=\dfrac{3}{4},\dfrac{3}{2},\dfrac{-5}{3}$ when $\lambda =45$ .
Note: Students can also consider $\alpha =2\beta $ , $\alpha =2\gamma $ , $\gamma =2\alpha ,\gamma =2\beta $ or $\beta =2\gamma $ . In either case the value of the roots and the $\lambda $ will be similar to the above solution. Students can also use other methods like elimination or cross-multiplication to solve the equations.
Complete step by step solution:
We have to solve the equation $24{{x}^{3}}-14{{x}^{2}}-63x+\lambda =0$ and find the value of $\lambda $ . Let us consider the roots to be $\alpha ,\beta $ and $\gamma $ . We know that the sum of roots in a cubic equation of the form $a{{x}^{3}}+b{{x}^{2}}+cx+d=0$ is given as
$\alpha +\beta +\gamma =\dfrac{-b}{a}$
Here, we can see that $a=24,b=-14,c=-63$ and $d=\lambda $ .
$\begin{align}
& \Rightarrow \alpha +\beta +\gamma =\dfrac{-\left( -14 \right)}{24} \\
& \Rightarrow \alpha +\beta +\gamma =\dfrac{14}{24} \\
\end{align}$
Let us cancel the common factor of 2 from the RHS.
$\Rightarrow \alpha +\beta +\gamma =\dfrac{7}{12}...\left( i \right)$
We are given that one root is double of another. Let us consider $\beta $ to be the double of $\alpha $
$\Rightarrow \beta =2\alpha ...\left( ii \right)$
Let us substitute the above value in the equation (i).
$\begin{align}
& \Rightarrow \alpha +2\alpha +\gamma =\dfrac{7}{12} \\
& \Rightarrow 3\alpha +\gamma =\dfrac{7}{12}...\left( iii \right) \\
\end{align}$
We know that the product of the roots of cubic equation is given as
$\alpha \beta \gamma =\dfrac{-d}{a}$
Let us substitute the values.
$\Rightarrow \alpha \beta \gamma =\dfrac{-\lambda }{24}$
Let us substitute (ii) in the above equation.
$\begin{align}
& \Rightarrow \alpha \cdot 2\alpha \cdot \gamma =\dfrac{-\lambda }{24} \\
& \Rightarrow 2{{\alpha }^{2}}\gamma =\dfrac{-\lambda }{24} \\
\end{align}$
Let us take 2 from LHS to the RHS.
$\begin{align}
& \Rightarrow {{\alpha }^{2}}\gamma =\dfrac{-\lambda }{24\times 2} \\
& \Rightarrow {{\alpha }^{2}}\gamma =\dfrac{-\lambda }{48}...\left( iv \right) \\
\end{align}$
We know that the sum of the products of the roots of cubic equation is given by
$\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a}$ .
Let us substitute the values in the above equation.
$\Rightarrow \alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{-63}{24}$
Let us cancel the common factor 3 from the RHS.
$\Rightarrow \alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{-21}{8}$
Now, we have to substitute (ii) in the above equation.
$\begin{align}
& \Rightarrow 2{{\alpha }^{2}}+2\alpha \gamma +\gamma \alpha =\dfrac{-21}{8} \\
& \Rightarrow 2{{\alpha }^{2}}+3\alpha \gamma =\dfrac{-21}{8}...\left( v \right) \\
\end{align}$
Let us solve equation (iii) and (v). Let us use a substitution method. From equation (iii), we can find the value of $\gamma $ as follows.
$\Rightarrow 3\alpha +\gamma =\dfrac{7}{12}$
Let us take $3\alpha $ to the RHS.
$\Rightarrow \gamma =\dfrac{7}{12}-3\alpha ...\left( vi \right)$
Let us substitute equation (vi) in equation (v).
$\Rightarrow 2{{\alpha }^{2}}+3\alpha \left( \dfrac{7}{12}-3\alpha \right)=\dfrac{-21}{8}$
We have to apply distributive property on the second term of the LHS.
\[\Rightarrow 2{{\alpha }^{2}}+\dfrac{21\alpha }{12}-9{{\alpha }^{2}}=\dfrac{-21}{8}\]
We have to solve the LHS.
\[\begin{align}
& \Rightarrow -7{{\alpha }^{2}}+\dfrac{21\alpha }{12}=\dfrac{-21}{8} \\
& \Rightarrow -7{{\alpha }^{2}}+\dfrac{7\alpha }{4}=\dfrac{-21}{8} \\
\end{align}\]
Let us take the common term 7 outside from the LHS.
\[\Rightarrow 7\left( -{{\alpha }^{2}}+\dfrac{\alpha }{4} \right)=\dfrac{-21}{8}\]
We can take 7 to the RHS.
\[\Rightarrow -{{\alpha }^{2}}+\dfrac{\alpha }{4}=\dfrac{-21}{8\times 7}\]
Let us cancel the common factor 7 from the RHS.
\[\Rightarrow -{{\alpha }^{2}}+\dfrac{\alpha }{4}=\dfrac{-3}{8}\]
We have to simplify the LHS by taking the LCM and solving.
\[\Rightarrow \dfrac{-4{{\alpha }^{2}}+\alpha }{4}=\dfrac{-3}{8}\]
Let us take 4 from the denominator of the LHS to the RHS.
\[\begin{align}
& \Rightarrow -4{{\alpha }^{2}}+\alpha =\dfrac{-3\times 4}{8} \\
& \Rightarrow -4{{\alpha }^{2}}+\alpha =\dfrac{-3}{2} \\
\end{align}\]
Let us take the RHS to the LHS.
\[\Rightarrow -4{{\alpha }^{2}}+\alpha +\dfrac{3}{2}=0\]
Now, we have to solve this equation. The above equation is of the form $a{{x}^{2}}+bx+c=0$ . We have to use the quadratic formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
$\begin{align}
& \Rightarrow \alpha =\dfrac{-1\pm \sqrt{{{1}^{2}}-4\times -4\times \dfrac{3}{2}}}{2\times -4} \\
& \Rightarrow \alpha =\dfrac{-1\pm \sqrt{1-4\times -2\times 3}}{-8} \\
& \Rightarrow \alpha =\dfrac{-1\pm \sqrt{1+24}}{-8} \\
& \Rightarrow \alpha =\dfrac{-1\pm \sqrt{25}}{-8} \\
& \Rightarrow \alpha =\dfrac{-1\pm 5}{-8} \\
\end{align}$
Let us split the signs.
$\Rightarrow \alpha =\dfrac{-1+5}{-8},\alpha =\dfrac{-1-5}{-8}$
Now, let us simplify the above expression.
$\begin{align}
& \Rightarrow \alpha =\dfrac{4}{-8},\alpha =\dfrac{-6}{-8} \\
& \Rightarrow \alpha =\dfrac{-1}{2},\alpha =\dfrac{3}{4} \\
\end{align}$
Now, we have obtained two values of $\alpha $ . Let us substitute each of these values in equation (vi).
Let us consider $\alpha =\dfrac{-1}{2}$ .
$\begin{align}
& \Rightarrow \gamma =\dfrac{7}{12}-3\times \dfrac{-1}{2} \\
& \Rightarrow \gamma =\dfrac{7}{12}+\dfrac{3}{2} \\
\end{align}$
We have to take the LCM and simplify.
$\Rightarrow \gamma =\dfrac{7}{12}+\dfrac{18}{12}=\dfrac{7+18}{12}=\dfrac{25}{12}$
Let us find $\beta $ from equation (ii).
$\Rightarrow \beta =2\times \dfrac{-1}{2}=-1$
Now, we have to find $\lambda $ using equation (iv).
$\begin{align}
& \Rightarrow {{\left( \dfrac{-1}{2} \right)}^{2}}\left( \dfrac{25}{12} \right)=\dfrac{-\lambda }{48} \\
& \Rightarrow \dfrac{1}{4}\times \left( \dfrac{25}{12} \right)=\dfrac{-\lambda }{48} \\
\end{align}$
Let us take 48 to the LHS.
$\Rightarrow -\lambda =\dfrac{1}{4}\times \dfrac{25}{12}\times 48$
Let us cancel the common factor 4.
$\Rightarrow -\lambda =\dfrac{25}{12}\times 12$
We have to cancel the common factor 12.
$\begin{align}
& \Rightarrow -\lambda =25 \\
& \Rightarrow \lambda =-25 \\
\end{align}$
Therefore, we found that $\alpha =\dfrac{-1}{2}$ , $\beta =-1,\gamma =\dfrac{25}{12},\lambda =-25$ .
Now, let us consider $\alpha =\dfrac{3}{4}$ .
Using equation (ii), we will get
$\beta =2\times \dfrac{3}{4}=\dfrac{3}{2}$
Let us substitute this value of $\alpha $ in equation (iv).
$\begin{align}
& \Rightarrow \gamma =\dfrac{7}{12}-3\times \dfrac{3}{4} \\
& \Rightarrow \gamma =\dfrac{7}{12}-\dfrac{9}{4} \\
\end{align}$
Let us take the LCM.
$\begin{align}
& \Rightarrow \gamma =\dfrac{7}{12}-\dfrac{27}{12}=\dfrac{7-27}{12} \\
& \Rightarrow \gamma =\dfrac{-20}{12} \\
\end{align}$
Let us cancel the common factor 4.
$\Rightarrow \gamma =\dfrac{-5}{3}$
Now, we have to substitute these values in equation (iv).
\[\begin{align}
& \Rightarrow {{\left( \dfrac{3}{4} \right)}^{2}}\left( \dfrac{-5}{3} \right)=\dfrac{-\lambda }{48} \\
& \Rightarrow \dfrac{9}{16}\times \dfrac{-5}{3}=\dfrac{-\lambda }{48} \\
\end{align}\]
Let us cancel the common factor 3.
\[\Rightarrow \dfrac{3}{16}\times -5=\dfrac{-\lambda }{48}\]
We have to take 48 from RHS to the LHS.
\[\Rightarrow \dfrac{3}{16}\times -5\times 48=-\lambda \]
Let us cancel the common factor 16.
\[\begin{align}
& \Rightarrow 3\times -5\times 3=-\lambda \\
& \Rightarrow -\lambda =-45 \\
& \Rightarrow \lambda =45 \\
\end{align}\]
Hence, we found that $\alpha =\dfrac{3}{4},\beta =\dfrac{3}{2},\gamma =\dfrac{-5}{3},\lambda =45$ .
Therefore, the solutions of $24{{x}^{3}}-14{{x}^{2}}-63x+\lambda =0$ are \[x=\dfrac{-1}{2},-1,\dfrac{25}{12}\] when \[\lambda =-25\] and $x=\dfrac{3}{4},\dfrac{3}{2},\dfrac{-5}{3}$ when $\lambda =45$ .
Note: Students can also consider $\alpha =2\beta $ , $\alpha =2\gamma $ , $\gamma =2\alpha ,\gamma =2\beta $ or $\beta =2\gamma $ . In either case the value of the roots and the $\lambda $ will be similar to the above solution. Students can also use other methods like elimination or cross-multiplication to solve the equations.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

10 examples of evaporation in daily life with explanations

Choose the feminine form of the given noun Fox AFoxess class 10 english CBSE
