
How do you solve the equation ${{2}^{3x+1}}={{3}^{x-2}}$ .
Answer
555k+ views
Hint: Now to solve the equation we will first simplify the equation by using properties of indices. We will try to write the equation in the form ${{\left( \dfrac{m}{n} \right)}^{x}}=\dfrac{p}{q}$ . Once we have the equation in this form we will take logs on both sides. Then we will use the properties of log to simplify the equation and hence find the value of x.
Complete step-by-step answer:
Now we know that ${{x}^{m+n}}={{x}^{m}}{{x}^{n}}$ and ${{x}^{m-n}}=\dfrac{{{x}^{m}}}{{{x}^{n}}}$ hence using this we can rewrite the equation as
$\Rightarrow {{2}^{3x}}.2=\dfrac{{{3}^{x}}}{{{3}^{2}}}$
Now dividing the whole equation by 2 we get,
$\Rightarrow {{2}^{3x}}=\dfrac{{{3}^{x}}}{{{2.3}^{2}}}$
Now we know that ${{a}^{mn}}={{\left( {{a}^{m}} \right)}^{n}}$ . Hence using this property we get,
$\begin{align}
& \Rightarrow {{\left( {{2}^{3}} \right)}^{x}}=\dfrac{{{3}^{x}}}{18} \\
& \Rightarrow {{8}^{x}}=\dfrac{{{3}^{x}}}{18} \\
\end{align}$
Now taking ${{3}^{x}}$ on RHS we get,
$\Rightarrow \dfrac{{{8}^{x}}}{{{3}^{x}}}=\dfrac{1}{18}$
$\Rightarrow {{\left( \dfrac{8}{3} \right)}^{x}}=\dfrac{1}{18}$
Now to solve this equation we will take log on both sides
Hence we get,
$\Rightarrow \log {{\left( \dfrac{8}{3} \right)}^{x}}=\log \left( \dfrac{1}{18} \right)$
Now we know the property of log which says $\log {{a}^{m}}=m\log a$ hence using this property we get,
$\Rightarrow x\log \left( \dfrac{8}{3} \right)=\log \left( \dfrac{1}{18} \right)$
Now we know that $\log \left( \dfrac{a}{b} \right)=\log a-\log b$ and hence we get
$\begin{align}
& \Rightarrow x\left[ \log 8-\log 3 \right]=\log 1-\log 18 \\
& \Rightarrow x\left[ \log {{2}^{3}}-\log 3 \right]=0-\log \left( 9\times 2 \right) \\
\end{align}$Now again using $\log {{a}^{m}}=m\log a$ and $\log \left( ab \right)=\log a+\log b$ we get,
$\begin{align}
& \Rightarrow x\left[ 3\times \log 2-\log 3 \right]=-\log 9-\log 2 \\
& \Rightarrow x\left[ 3\times \log 2-\log 3 \right]=-\log {{3}^{2}}-\log 2 \\
& \Rightarrow x\left[ 3\times \log 2-\log 3 \right]=-2\times \log 3-\log 2 \\
\end{align}$Now we know that log2 = 0.3 and log 3 = 0.477
Now substituting the values in the equation we get,
$\begin{align}
& \Rightarrow x\left[ 3\times 0.3-0.477 \right]=-2\times 0.477-0.3 \\
& \Rightarrow 0.423x=1.254 \\
& \Rightarrow x=\dfrac{1.254}{0.423}=2.96 \\
\end{align}$
Hence the solution of the equation is 2.96.
Note: Note that there will not be an integer solution of the equation as $2\times 2\times 2...$ will be even while $3\times 3\times 3...$ will always be odd. Hence x will never be an integer but will be a rational number. Now not that if here we had the variable in power. Whenever we have variable in power we can take log and simplify the equation. We can also directly take log and solve the equation but for simple calculations we have first simplified the equation and then used log to solve the equation.
Complete step-by-step answer:
Now we know that ${{x}^{m+n}}={{x}^{m}}{{x}^{n}}$ and ${{x}^{m-n}}=\dfrac{{{x}^{m}}}{{{x}^{n}}}$ hence using this we can rewrite the equation as
$\Rightarrow {{2}^{3x}}.2=\dfrac{{{3}^{x}}}{{{3}^{2}}}$
Now dividing the whole equation by 2 we get,
$\Rightarrow {{2}^{3x}}=\dfrac{{{3}^{x}}}{{{2.3}^{2}}}$
Now we know that ${{a}^{mn}}={{\left( {{a}^{m}} \right)}^{n}}$ . Hence using this property we get,
$\begin{align}
& \Rightarrow {{\left( {{2}^{3}} \right)}^{x}}=\dfrac{{{3}^{x}}}{18} \\
& \Rightarrow {{8}^{x}}=\dfrac{{{3}^{x}}}{18} \\
\end{align}$
Now taking ${{3}^{x}}$ on RHS we get,
$\Rightarrow \dfrac{{{8}^{x}}}{{{3}^{x}}}=\dfrac{1}{18}$
$\Rightarrow {{\left( \dfrac{8}{3} \right)}^{x}}=\dfrac{1}{18}$
Now to solve this equation we will take log on both sides
Hence we get,
$\Rightarrow \log {{\left( \dfrac{8}{3} \right)}^{x}}=\log \left( \dfrac{1}{18} \right)$
Now we know the property of log which says $\log {{a}^{m}}=m\log a$ hence using this property we get,
$\Rightarrow x\log \left( \dfrac{8}{3} \right)=\log \left( \dfrac{1}{18} \right)$
Now we know that $\log \left( \dfrac{a}{b} \right)=\log a-\log b$ and hence we get
$\begin{align}
& \Rightarrow x\left[ \log 8-\log 3 \right]=\log 1-\log 18 \\
& \Rightarrow x\left[ \log {{2}^{3}}-\log 3 \right]=0-\log \left( 9\times 2 \right) \\
\end{align}$Now again using $\log {{a}^{m}}=m\log a$ and $\log \left( ab \right)=\log a+\log b$ we get,
$\begin{align}
& \Rightarrow x\left[ 3\times \log 2-\log 3 \right]=-\log 9-\log 2 \\
& \Rightarrow x\left[ 3\times \log 2-\log 3 \right]=-\log {{3}^{2}}-\log 2 \\
& \Rightarrow x\left[ 3\times \log 2-\log 3 \right]=-2\times \log 3-\log 2 \\
\end{align}$Now we know that log2 = 0.3 and log 3 = 0.477
Now substituting the values in the equation we get,
$\begin{align}
& \Rightarrow x\left[ 3\times 0.3-0.477 \right]=-2\times 0.477-0.3 \\
& \Rightarrow 0.423x=1.254 \\
& \Rightarrow x=\dfrac{1.254}{0.423}=2.96 \\
\end{align}$
Hence the solution of the equation is 2.96.
Note: Note that there will not be an integer solution of the equation as $2\times 2\times 2...$ will be even while $3\times 3\times 3...$ will always be odd. Hence x will never be an integer but will be a rational number. Now not that if here we had the variable in power. Whenever we have variable in power we can take log and simplify the equation. We can also directly take log and solve the equation but for simple calculations we have first simplified the equation and then used log to solve the equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

