
Solve \[\tan \left[ {\left( {\dfrac{1}{2}} \right){{\sin }^{ - 1}}\left( {\dfrac{{2a}}{{\left( {1 + {a^2}} \right)}}} \right) + \left( {\dfrac{1}{2}} \right){{\cos }^{ - 1}}\left( {\dfrac{{\left( {1 - {a^2}} \right)}}{{\left( {1 + {a^2}} \right)}}} \right)} \right] = \]
A.\[\dfrac{{2a}}{{\left( {1 + {a^2}} \right)}}\]
B.\[\dfrac{{\left( {1 - {a^2}} \right)}}{{\left( {1 + {a^2}} \right)}}\]
C.\[\dfrac{{2a}}{{\left( {1 - {a^2}} \right)}}\]
D.None of these
Answer
506.7k+ views
Hint: In the given question the expression is related to the inverse trigonometric function with variables as angles . So , whenever the variables are present , try to substitute the value of the given variable with another trigonometric function to form an identity or formula and then solve it accordingly .
Complete step-by-step answer:
Given : \[\tan \left[ {\left( {\dfrac{1}{2}} \right){{\sin }^{ - 1}}\left( {\dfrac{{2a}}{{\left( {1 + {a^2}} \right)}}} \right) + \left( {\dfrac{1}{2}} \right){{\cos }^{ - 1}}\left( {\dfrac{{\left( {1 - {a^2}} \right)}}{{\left( {1 + {a^2}} \right)}}} \right)} \right]\] ………..equation (A)
In this question we will solve the \[{\sin ^{ - 1}}\left( {\dfrac{{2a}}{{\left( {1 + {a^2}} \right)}}} \right)\] and \[{\cos ^{ - 1}}\left( {\dfrac{{\left( {1 - {a^2}} \right)}}{{\left( {1 + {a^2}} \right)}}} \right)\] differently for ease .
So , for \[{\sin ^{ - 1}}\left( {\dfrac{{2a}}{{\left( {1 + {a^2}} \right)}}} \right)\] , we will put \[a = \tan x\] , we get
\[ = {\sin ^{ - 1}}\left( {\dfrac{{2\tan x}}{{\left( {1 + {{\tan }^2}x} \right)}}} \right)\]
The above expression represents the identity for \[\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}\] ,
Therefore on solving we get ,
\[ = {\sin ^{ - 1}}\left( {\sin 2x} \right)\]
On simplifying we get ,
\[ = 2x\]
Now solving the term \[{\cos ^{ - 1}}\left( {\dfrac{{\left( {1 - {a^2}} \right)}}{{\left( {1 + {a^2}} \right)}}} \right)\] we get
Putting the value of \[a = \tan y\], we get
\[ = {\cos ^{ - 1}}\left( {\dfrac{{\left( {1 - \tan {y^2}} \right)}}{{\left( {1 + \tan {y^2}} \right)}}} \right)\]
The above expression represents the identity for \[\cos 2x = \dfrac{{1 - {{\tan }^2}y}}{{1 + {{\tan }^2}y}}\]
Therefore , we get
\[ = {\cos ^{ - 1}}\left( {\cos 2y} \right)\]
On simplifying we get
\[ = 2y\]
Now , putting the value of both the terms in the equation (A) , we get
\[ = \tan \left[ {\left( {\dfrac{1}{2}} \right) \times 2x + \left( {\dfrac{1}{2}} \right) \times 2y} \right]\]
On solving we get
\[ = \tan \left[ {x + y} \right]\]
Now using the identity of \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] we get ,
\[ = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\]
Now putting the values of \[x = {\tan ^{ - 1}}a\] and \[y = {\tan ^{ - 1}}a\] we get ,
\[ = \dfrac{{\tan \left( {{{\tan }^{ - 1}}a} \right) + \tan \left( {{{\tan }^{ - 1}}a} \right)}}{{1 - \tan \left( {{{\tan }^{ - 1}}a} \right)\tan \left( {{{\tan }^{ - 1}}a} \right)}}\] on simplifying we get ,
\[ = \dfrac{{a + a}}{{1 - a \times a}}\]
On solving further we get ,
\[ = \dfrac{{2a}}{{1 - {a^2}}}\]
Therefore , the correct answer is option (C) for the given question .
So, the correct answer is “Option C”.
Note: Inverse Trigonometric Functions plays an important role in calculus to find out the various integrals . Inverse trigonometric functions are also used in other areas such as science and engineering . The inverse of function is not cancelled out with same trigonometric function like \[{\sin ^{ - 1}}(\sin x)\] , here trigonometric function is not cancelled out with its inverse it's just like equating the angles as the angles in range of \[\sin x\] .
Complete step-by-step answer:
Given : \[\tan \left[ {\left( {\dfrac{1}{2}} \right){{\sin }^{ - 1}}\left( {\dfrac{{2a}}{{\left( {1 + {a^2}} \right)}}} \right) + \left( {\dfrac{1}{2}} \right){{\cos }^{ - 1}}\left( {\dfrac{{\left( {1 - {a^2}} \right)}}{{\left( {1 + {a^2}} \right)}}} \right)} \right]\] ………..equation (A)
In this question we will solve the \[{\sin ^{ - 1}}\left( {\dfrac{{2a}}{{\left( {1 + {a^2}} \right)}}} \right)\] and \[{\cos ^{ - 1}}\left( {\dfrac{{\left( {1 - {a^2}} \right)}}{{\left( {1 + {a^2}} \right)}}} \right)\] differently for ease .
So , for \[{\sin ^{ - 1}}\left( {\dfrac{{2a}}{{\left( {1 + {a^2}} \right)}}} \right)\] , we will put \[a = \tan x\] , we get
\[ = {\sin ^{ - 1}}\left( {\dfrac{{2\tan x}}{{\left( {1 + {{\tan }^2}x} \right)}}} \right)\]
The above expression represents the identity for \[\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}\] ,
Therefore on solving we get ,
\[ = {\sin ^{ - 1}}\left( {\sin 2x} \right)\]
On simplifying we get ,
\[ = 2x\]
Now solving the term \[{\cos ^{ - 1}}\left( {\dfrac{{\left( {1 - {a^2}} \right)}}{{\left( {1 + {a^2}} \right)}}} \right)\] we get
Putting the value of \[a = \tan y\], we get
\[ = {\cos ^{ - 1}}\left( {\dfrac{{\left( {1 - \tan {y^2}} \right)}}{{\left( {1 + \tan {y^2}} \right)}}} \right)\]
The above expression represents the identity for \[\cos 2x = \dfrac{{1 - {{\tan }^2}y}}{{1 + {{\tan }^2}y}}\]
Therefore , we get
\[ = {\cos ^{ - 1}}\left( {\cos 2y} \right)\]
On simplifying we get
\[ = 2y\]
Now , putting the value of both the terms in the equation (A) , we get
\[ = \tan \left[ {\left( {\dfrac{1}{2}} \right) \times 2x + \left( {\dfrac{1}{2}} \right) \times 2y} \right]\]
On solving we get
\[ = \tan \left[ {x + y} \right]\]
Now using the identity of \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] we get ,
\[ = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\]
Now putting the values of \[x = {\tan ^{ - 1}}a\] and \[y = {\tan ^{ - 1}}a\] we get ,
\[ = \dfrac{{\tan \left( {{{\tan }^{ - 1}}a} \right) + \tan \left( {{{\tan }^{ - 1}}a} \right)}}{{1 - \tan \left( {{{\tan }^{ - 1}}a} \right)\tan \left( {{{\tan }^{ - 1}}a} \right)}}\] on simplifying we get ,
\[ = \dfrac{{a + a}}{{1 - a \times a}}\]
On solving further we get ,
\[ = \dfrac{{2a}}{{1 - {a^2}}}\]
Therefore , the correct answer is option (C) for the given question .
So, the correct answer is “Option C”.
Note: Inverse Trigonometric Functions plays an important role in calculus to find out the various integrals . Inverse trigonometric functions are also used in other areas such as science and engineering . The inverse of function is not cancelled out with same trigonometric function like \[{\sin ^{ - 1}}(\sin x)\] , here trigonometric function is not cancelled out with its inverse it's just like equating the angles as the angles in range of \[\sin x\] .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

