
How do you solve $\sin \left( {\dfrac{x}{2}} \right) + \cos x - 1 = 0$ over the interval 0 to $2\pi$ ?
Answer
446.4k+ views
Hint: In this question, we need to solve the trigonometric equation over the given intervals. We solve this using the basic identities of trigonometric ratios. We will make use of the identity given by, $\cos 2x = 1 - 2{\sin ^2}x$. From this we find the expression for $\cos x$ and substitute in the given equation. Then we simplify the equation further to solve it and find out the values for the variable x in the given interval and obtain the required solution.
Complete step-by-step answer:
Given an trigonometric expression of the form $\sin \left( {\dfrac{x}{2}} \right) + \cos x - 1 = 0$ …… (1)
We are asked to solve the above expression given in the equation (1) over the interval 0 to $2\pi $.
Firstly, we will find out the expression for cosine in terms of sine. So that it will be easier to simplify and obtain the solution.
We have the identity, $\cos 2x = 1 - 2{\sin ^2}x$
$ \Rightarrow \cos x = 1 - 2{\sin ^2}\left( {\dfrac{x}{2}} \right)$
Substituting this in the equation (1), we get,
$ \Rightarrow \sin \left( {\dfrac{x}{2}} \right) + \left( {1 - 2{{\sin }^2}\left( {\dfrac{x}{2}} \right)} \right) - 1 = 0$
Rearranging the terms, we get,
$ \Rightarrow \sin \left( {\dfrac{x}{2}} \right) + \left( { - 2{{\sin }^2}\left( {\dfrac{x}{2}} \right)} \right) + 1 - 1 = 0$
$ \Rightarrow \sin \left( {\dfrac{x}{2}} \right) + \left( { - 2{{\sin }^2}\left( {\dfrac{x}{2}} \right)} \right) = 0$
Taking out the common factor which is $\sin \left( {\dfrac{x}{2}} \right)$, we get,
$ \Rightarrow \sin \left( {\dfrac{x}{2}} \right)\left( {1 - 2\sin \left( {\dfrac{x}{2}} \right)} \right) = 0$
$ \Rightarrow \sin \left( {\dfrac{x}{2}} \right) = 0$ or $\left( {1 - 2\sin \left( {\dfrac{x}{2}} \right)} \right) = 0$
Given that we need to choose values for x over the intervals 0 to $2\pi $.
If $\sin \left( {\dfrac{x}{2}} \right) = 0$. We know that $\sin 0 = 0$ and $\sin (\pi ) = 0$
So we get, $\sin \left( {\dfrac{x}{2}} \right) = \sin 0$
$ \Rightarrow \dfrac{x}{2} = 0$
$ \Rightarrow x = 0$
Also we have $\sin \left( {\dfrac{x}{2}} \right) = \sin \pi $
$ \Rightarrow \dfrac{x}{2} = \pi $
$ \Rightarrow x = 2\pi $
If $\left( {1 - 2\sin \left( {\dfrac{x}{2}} \right)} \right) = 0$. Then we simplify this equation, we get,
$ \Rightarrow 1 = 2\sin \left( {\dfrac{x}{2}} \right)$
$ \Rightarrow \sin \left( {\dfrac{x}{2}} \right) = \dfrac{1}{2}$
We know that $\sin \dfrac{\pi }{6} = \dfrac{1}{2}$ and also $\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2}$
So we get, $\sin \left( {\dfrac{x}{2}} \right) = \sin \dfrac{\pi }{6}$
$ \Rightarrow \dfrac{x}{2} = \dfrac{\pi }{6}$
Simplifying this, we get,
$ \Rightarrow x = \dfrac{{2\pi }}{6}$
$ \Rightarrow x = \dfrac{\pi }{3}$
Also we have $\sin \left( {\dfrac{x}{2}} \right) = \sin \dfrac{{5\pi }}{6}$
$ \Rightarrow \dfrac{x}{2} = \dfrac{{5\pi }}{6}$
Taking 2 to the other side, we get,
$ \Rightarrow x = \dfrac{{2 \times 5\pi }}{6}$
$ \Rightarrow x = \dfrac{{5\pi }}{3}$
Hence we get the values of x as $x = 0,$ $2\pi ,$ $\dfrac{\pi }{3},$ $\dfrac{{5\pi }}{3}$.
Thus, the solution for the equation $\sin \left( {\dfrac{x}{2}} \right) + \cos x - 1 = 0$ over the interval 0 to $2\pi$ is given by, $x = 0,$ $2\pi ,$ $\dfrac{\pi }{3},$ $\dfrac{{5\pi }}{3}$.
Note:
We can check whether the obtained values of the variable x is correct by substituting back in the given expression. If the equation satisfies the values of x, i.e. if we get L.H.S. is equal to R.H.S. then our value of x is correct. If the equation is not satisfied, then our solution is wrong.
We must know the values of trigonometric ratios for different angles, as it plays an important role in solving such problems and it makes our calculation easier.
Some of the identities of trigonometry are given below.
(1) $\cos 2x = {\cos ^2}x - {\sin ^2}x$
(2) $\cos 2x = 2{\cos ^2}x - 1$
(3) $\cos 2x = 1 - 2{\sin ^2}x$
(4) $\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$
(5) $\sin 2x = 2\sin x\cos x$
Complete step-by-step answer:
Given an trigonometric expression of the form $\sin \left( {\dfrac{x}{2}} \right) + \cos x - 1 = 0$ …… (1)
We are asked to solve the above expression given in the equation (1) over the interval 0 to $2\pi $.
Firstly, we will find out the expression for cosine in terms of sine. So that it will be easier to simplify and obtain the solution.
We have the identity, $\cos 2x = 1 - 2{\sin ^2}x$
$ \Rightarrow \cos x = 1 - 2{\sin ^2}\left( {\dfrac{x}{2}} \right)$
Substituting this in the equation (1), we get,
$ \Rightarrow \sin \left( {\dfrac{x}{2}} \right) + \left( {1 - 2{{\sin }^2}\left( {\dfrac{x}{2}} \right)} \right) - 1 = 0$
Rearranging the terms, we get,
$ \Rightarrow \sin \left( {\dfrac{x}{2}} \right) + \left( { - 2{{\sin }^2}\left( {\dfrac{x}{2}} \right)} \right) + 1 - 1 = 0$
$ \Rightarrow \sin \left( {\dfrac{x}{2}} \right) + \left( { - 2{{\sin }^2}\left( {\dfrac{x}{2}} \right)} \right) = 0$
Taking out the common factor which is $\sin \left( {\dfrac{x}{2}} \right)$, we get,
$ \Rightarrow \sin \left( {\dfrac{x}{2}} \right)\left( {1 - 2\sin \left( {\dfrac{x}{2}} \right)} \right) = 0$
$ \Rightarrow \sin \left( {\dfrac{x}{2}} \right) = 0$ or $\left( {1 - 2\sin \left( {\dfrac{x}{2}} \right)} \right) = 0$
Given that we need to choose values for x over the intervals 0 to $2\pi $.
If $\sin \left( {\dfrac{x}{2}} \right) = 0$. We know that $\sin 0 = 0$ and $\sin (\pi ) = 0$
So we get, $\sin \left( {\dfrac{x}{2}} \right) = \sin 0$
$ \Rightarrow \dfrac{x}{2} = 0$
$ \Rightarrow x = 0$
Also we have $\sin \left( {\dfrac{x}{2}} \right) = \sin \pi $
$ \Rightarrow \dfrac{x}{2} = \pi $
$ \Rightarrow x = 2\pi $
If $\left( {1 - 2\sin \left( {\dfrac{x}{2}} \right)} \right) = 0$. Then we simplify this equation, we get,
$ \Rightarrow 1 = 2\sin \left( {\dfrac{x}{2}} \right)$
$ \Rightarrow \sin \left( {\dfrac{x}{2}} \right) = \dfrac{1}{2}$
We know that $\sin \dfrac{\pi }{6} = \dfrac{1}{2}$ and also $\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2}$
So we get, $\sin \left( {\dfrac{x}{2}} \right) = \sin \dfrac{\pi }{6}$
$ \Rightarrow \dfrac{x}{2} = \dfrac{\pi }{6}$
Simplifying this, we get,
$ \Rightarrow x = \dfrac{{2\pi }}{6}$
$ \Rightarrow x = \dfrac{\pi }{3}$
Also we have $\sin \left( {\dfrac{x}{2}} \right) = \sin \dfrac{{5\pi }}{6}$
$ \Rightarrow \dfrac{x}{2} = \dfrac{{5\pi }}{6}$
Taking 2 to the other side, we get,
$ \Rightarrow x = \dfrac{{2 \times 5\pi }}{6}$
$ \Rightarrow x = \dfrac{{5\pi }}{3}$
Hence we get the values of x as $x = 0,$ $2\pi ,$ $\dfrac{\pi }{3},$ $\dfrac{{5\pi }}{3}$.
Thus, the solution for the equation $\sin \left( {\dfrac{x}{2}} \right) + \cos x - 1 = 0$ over the interval 0 to $2\pi$ is given by, $x = 0,$ $2\pi ,$ $\dfrac{\pi }{3},$ $\dfrac{{5\pi }}{3}$.
Note:
We can check whether the obtained values of the variable x is correct by substituting back in the given expression. If the equation satisfies the values of x, i.e. if we get L.H.S. is equal to R.H.S. then our value of x is correct. If the equation is not satisfied, then our solution is wrong.
We must know the values of trigonometric ratios for different angles, as it plays an important role in solving such problems and it makes our calculation easier.
Some of the identities of trigonometry are given below.
(1) $\cos 2x = {\cos ^2}x - {\sin ^2}x$
(2) $\cos 2x = 2{\cos ^2}x - 1$
(3) $\cos 2x = 1 - 2{\sin ^2}x$
(4) $\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$
(5) $\sin 2x = 2\sin x\cos x$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
