
Solve: $\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ }$
Answer
500.7k+ views
Hint: We will be using the addition formula of trigonometry to solve this question. The addition formula is $\sin A\cos B + \sin B\cos A = \sin (A + B)$ .
Complete step-by-step answer:
Method $1$:
We have to solve $\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ }$
Using the formula $\sin A\cos B + \sin B\cos A = \sin (A + B)$ , we get $A = {60^ \circ }$ and $B = {30^ \circ }$ .
Substituting these values,
$\sin A\cos B + \sin B\cos A = \sin (A + B)$
$\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = \sin ({60^ \circ } + {30^ \circ })$
$\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = \sin ({90^ \circ })$
We know, $\sin {90^ \circ } = 1$,
$\therefore \sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = 1$
Method $2$:
Standard trigonometric values:
The value of $\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}$ , $\cos {60^ \circ } = \dfrac{1}{2}$, $\sin {30^ \circ } = \dfrac{1}{2}$, $\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Substituting all these values in $\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ }$,
$\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times \dfrac{1}{2}$
$\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = \dfrac{3}{4} + \dfrac{1}{4}$
$\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = \dfrac{{3 + 1}}{4}$
$\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = \dfrac{4}{4}$
$\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = \dfrac{4}{4}$
$\therefore \sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = 1$
Note: Angle sum identities and angle difference identities can be used to find the function values of any angles however, the most practical use is to find exact values of an angle that can be written as a sum or difference using the familiar values for the sine, cosine, and tangent of the ${0^ \circ }$, ${30^ \circ }$, ${45^ \circ }$, ${60^ \circ }$and ${90^ \circ }$ angles and their multiples.
Complete step-by-step answer:
Method $1$:
We have to solve $\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ }$
Using the formula $\sin A\cos B + \sin B\cos A = \sin (A + B)$ , we get $A = {60^ \circ }$ and $B = {30^ \circ }$ .
Substituting these values,
$\sin A\cos B + \sin B\cos A = \sin (A + B)$
$\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = \sin ({60^ \circ } + {30^ \circ })$
$\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = \sin ({90^ \circ })$
We know, $\sin {90^ \circ } = 1$,
$\therefore \sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = 1$
Method $2$:
Standard trigonometric values:
| ${0^ \circ }$ | ${30^ \circ }$ | ${45^ \circ }$ | ${60^ \circ }$ | ${90^ \circ }$ | |
| sin$\theta $ | $0$ | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | $1$ |
| cos$\theta $ | $1$ | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | $0$ |
| tan$\theta $ | $0$ | $\dfrac{1}{{\sqrt 3 }}$ | $1$ | $\sqrt 3 $ | $\infty $ |
The value of $\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}$ , $\cos {60^ \circ } = \dfrac{1}{2}$, $\sin {30^ \circ } = \dfrac{1}{2}$, $\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Substituting all these values in $\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ }$,
$\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times \dfrac{1}{2}$
$\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = \dfrac{3}{4} + \dfrac{1}{4}$
$\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = \dfrac{{3 + 1}}{4}$
$\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = \dfrac{4}{4}$
$\sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = \dfrac{4}{4}$
$\therefore \sin {60^ \circ }\cos {30^ \circ } + \sin {30^ \circ }\cos {60^ \circ } = 1$
Note: Angle sum identities and angle difference identities can be used to find the function values of any angles however, the most practical use is to find exact values of an angle that can be written as a sum or difference using the familiar values for the sine, cosine, and tangent of the ${0^ \circ }$, ${30^ \circ }$, ${45^ \circ }$, ${60^ \circ }$and ${90^ \circ }$ angles and their multiples.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

