
Solve \[\left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\cot 3A - \cot A}}} \right] = \]
A.\[\tan A\]
B.\[\tan 2A\]
C.\[\cot A\]
D.\[\cot 2A\]
Answer
506.1k+ views
Hint: For question related to proof of \[\tan \] and \[\cot \] we have always have to convert \[\cot \] and \[\tan \] into \[\tan = \dfrac{{\sin }}{{\cos }}\] and for \[\cot = \dfrac{{\cos }}{{\sin }}\] , which will simplify the question briefly . Do not use any identity for \[\tan 3A\] and \[\cot 3A\] which would make the question more complex . These questions are short and tricky .
Complete step-by-step answer:
Given : \[\left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\cot 3A - \cot A}}} \right]\] ,
putting \[\tan 3A = \dfrac{{\sin 3A}}{{\cos 3A}}\] and \[\cot 3A = \dfrac{{\cos 3A}}{{\sin 3A}}\] we get ,
\[ = \left[ {\dfrac{1}{{\dfrac{{\sin 3A}}{{\cos 3A}} - \dfrac{{\sin A}}{{\cos A}}}}} \right] - \left[ {\dfrac{1}{{\dfrac{{\cos 3A}}{{\sin 3A}} - \dfrac{{\cos A}}{{\sin A}}}}} \right]\] , on solving we get
\[ = \left[ {\dfrac{1}{{\dfrac{{\sin 3A\cos A - \cos 3A\sin A}}{{\cos 3A{\text{ }}\cos A}}}}} \right] - \left[ {\dfrac{1}{{\dfrac{{\cos 3A\sin A - \sin 3A\cos A}}{{\sin 3A\sin A}}}}} \right]\]
On further simplifying, we get
\[ = \left[ {\dfrac{{\cos 3A\cos A}}{{\sin 3A\cos A - \cos 3A\sin A}}} \right] - \left[ {\dfrac{{\sin 3A\sin A}}{{\cos 3A\sin A - \sin 3A\cos A}}} \right]\] , on rearranging we get ,
\[ = \left[ {\dfrac{{\cos 3A\cos A}}{{\sin 3A\cos A - \cos 3A\sin A}}} \right] + \left[ {\dfrac{{\sin 3A\sin A}}{{\sin 3A\cos A - \cos 3A\sin A}}} \right]\]
Now , using the identity of \[\sin (A + B) = \sin A\cos B + \cos A\sin B\] in denominator we get ,
\[ = \left[ {\dfrac{{\cos 3A\cos A}}{{\sin (3A - A)}}} \right] + \left[ {\dfrac{{\sin 3A\sin A}}{{\sin (3A - A)}}} \right]\] , on solving we get
\[ = \left[ {\dfrac{{\cos 3A\cos A}}{{\sin 2A}}} \right] + \left[ {\dfrac{{\sin 3A\sin A}}{{\sin 2A}}} \right]\]
On solving further we get
\[ = \left[ {\dfrac{{\cos 3A\cos A + \sin 3A\sin A}}{{\sin 2A}}} \right]\] ,
Now using the identity of \[\cos (A - B) = \cos A\cos B + \sin A\sin B\] , we get
\[ = \left[ {\dfrac{{\cos (3A - A)}}{{\sin 2A}}} \right]\]
\[ = \left[ {\dfrac{{\cos 2A}}{{\sin 2A}}} \right]\]
Hence, we can write the final answer as
\[ = \cot 2A\] .
Therefore , option ( 4 ) is the correct answer for the given question .
So, the correct answer is “Option 4”.
Note: Alternate Method :
\[ = \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\cot 3A - \cot A}}} \right]\]
We know that \[\cot A = \dfrac{1}{{\tan A}}\] , applying this to above equation we get
\[ = \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\dfrac{1}{{\tan 3A}} - \dfrac{1}{{\tan A}}}}} \right]\]
On solving we get
\[ = \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\dfrac{1}{{\tan 3A}} - \dfrac{1}{{\tan A}}}}} \right]\] , on solving we get
\[ = \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\dfrac{{\tan A - \tan 3A}}{{\tan 3A\tan A}}}}} \right]\]
On simplifying we get
\[ = \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{{\tan 3A\tan A}}{{\tan A - \tan 3A}}} \right]\] , on rearranging we get
\[ = \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] + \left[ {\dfrac{{\tan 3A\tan A}}{{\tan 3A - \tan A}}} \right]\]
On further solving we get
\[ = \left[ {\dfrac{{1 + \tan 3A\tan A}}{{\tan 3A - \tan A}}} \right]\] , rewriting the expression we get
\[ = \left[ {\dfrac{1}{{\dfrac{{\tan 3A - \tan A}}{{1 + \tan 3A\tan A}}}}} \right]\]
Now using the identity of \[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 + \tan A\tan B}}\]
\[ = \left[ {\dfrac{1}{{\tan (3A - A)}}} \right]\] , on solving we get
\[ = \left[ {\dfrac{1}{{\tan 2A}}} \right]\]
Hence, we can write the final answer as
\[ = \cot 2A\]
Complete step-by-step answer:
Given : \[\left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\cot 3A - \cot A}}} \right]\] ,
putting \[\tan 3A = \dfrac{{\sin 3A}}{{\cos 3A}}\] and \[\cot 3A = \dfrac{{\cos 3A}}{{\sin 3A}}\] we get ,
\[ = \left[ {\dfrac{1}{{\dfrac{{\sin 3A}}{{\cos 3A}} - \dfrac{{\sin A}}{{\cos A}}}}} \right] - \left[ {\dfrac{1}{{\dfrac{{\cos 3A}}{{\sin 3A}} - \dfrac{{\cos A}}{{\sin A}}}}} \right]\] , on solving we get
\[ = \left[ {\dfrac{1}{{\dfrac{{\sin 3A\cos A - \cos 3A\sin A}}{{\cos 3A{\text{ }}\cos A}}}}} \right] - \left[ {\dfrac{1}{{\dfrac{{\cos 3A\sin A - \sin 3A\cos A}}{{\sin 3A\sin A}}}}} \right]\]
On further simplifying, we get
\[ = \left[ {\dfrac{{\cos 3A\cos A}}{{\sin 3A\cos A - \cos 3A\sin A}}} \right] - \left[ {\dfrac{{\sin 3A\sin A}}{{\cos 3A\sin A - \sin 3A\cos A}}} \right]\] , on rearranging we get ,
\[ = \left[ {\dfrac{{\cos 3A\cos A}}{{\sin 3A\cos A - \cos 3A\sin A}}} \right] + \left[ {\dfrac{{\sin 3A\sin A}}{{\sin 3A\cos A - \cos 3A\sin A}}} \right]\]
Now , using the identity of \[\sin (A + B) = \sin A\cos B + \cos A\sin B\] in denominator we get ,
\[ = \left[ {\dfrac{{\cos 3A\cos A}}{{\sin (3A - A)}}} \right] + \left[ {\dfrac{{\sin 3A\sin A}}{{\sin (3A - A)}}} \right]\] , on solving we get
\[ = \left[ {\dfrac{{\cos 3A\cos A}}{{\sin 2A}}} \right] + \left[ {\dfrac{{\sin 3A\sin A}}{{\sin 2A}}} \right]\]
On solving further we get
\[ = \left[ {\dfrac{{\cos 3A\cos A + \sin 3A\sin A}}{{\sin 2A}}} \right]\] ,
Now using the identity of \[\cos (A - B) = \cos A\cos B + \sin A\sin B\] , we get
\[ = \left[ {\dfrac{{\cos (3A - A)}}{{\sin 2A}}} \right]\]
\[ = \left[ {\dfrac{{\cos 2A}}{{\sin 2A}}} \right]\]
Hence, we can write the final answer as
\[ = \cot 2A\] .
Therefore , option ( 4 ) is the correct answer for the given question .
So, the correct answer is “Option 4”.
Note: Alternate Method :
\[ = \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\cot 3A - \cot A}}} \right]\]
We know that \[\cot A = \dfrac{1}{{\tan A}}\] , applying this to above equation we get
\[ = \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\dfrac{1}{{\tan 3A}} - \dfrac{1}{{\tan A}}}}} \right]\]
On solving we get
\[ = \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\dfrac{1}{{\tan 3A}} - \dfrac{1}{{\tan A}}}}} \right]\] , on solving we get
\[ = \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\dfrac{{\tan A - \tan 3A}}{{\tan 3A\tan A}}}}} \right]\]
On simplifying we get
\[ = \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{{\tan 3A\tan A}}{{\tan A - \tan 3A}}} \right]\] , on rearranging we get
\[ = \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] + \left[ {\dfrac{{\tan 3A\tan A}}{{\tan 3A - \tan A}}} \right]\]
On further solving we get
\[ = \left[ {\dfrac{{1 + \tan 3A\tan A}}{{\tan 3A - \tan A}}} \right]\] , rewriting the expression we get
\[ = \left[ {\dfrac{1}{{\dfrac{{\tan 3A - \tan A}}{{1 + \tan 3A\tan A}}}}} \right]\]
Now using the identity of \[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 + \tan A\tan B}}\]
\[ = \left[ {\dfrac{1}{{\tan (3A - A)}}} \right]\] , on solving we get
\[ = \left[ {\dfrac{1}{{\tan 2A}}} \right]\]
Hence, we can write the final answer as
\[ = \cot 2A\]
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

