
Solve, If $y = \sqrt {\dfrac{{1 - \sin 2x}}{{1 + \sin 2x}}} $ then ${\left[ {\dfrac{{dy}}{{dx}}} \right]_{x = 0}}$ is :-
A.$\dfrac{1}{2}$
B.$1$
C.$ - 2$
D. None of the above.
Answer
617.4k+ views
Hint: In order to solve this problem we need to know the formula that $[{(\cos a \pm \sin a)^2} = {\sin ^2}a + {\cos ^2}a \pm 2\sin a\cos a = 1 \pm \sin 2a]$ then differentiate and put x = 2 to get the answer.
Complete Step-by-Step solution:
The given equation is $y = \sqrt {\dfrac{{1 - \sin 2x}}{{1 + \sin 2x}}} $ ………(1)
And we know the formula $[{(\cos a \pm \sin a)^2} = {\sin ^2}a + {\cos ^2}a \pm 2\sin a\cos a = 1 \pm \sin 2a]$
Since, ${\sin ^2}a + {\cos ^2}a$=1 and $2\sin a\cos a = \sin 2a$
So we can write equation (1) as :
$
y = \sqrt {\dfrac{{{{(\cos x - \sin x)}^2}}}{{{{(\cos x + \sin x)}^2}}}} = \dfrac{{(\cos x - \sin x)}}{{(\cos x + \sin x)}} \\
{\text{On dividing this equation by }}\cos x{\text{ we get:}} \\
\Rightarrow \dfrac{{1 - \tan x}}{{1 + \tan x}}....................(2) \\
$
And we also know the formula $\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$
$
\tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4}\tan x}}...............(3) \\
{\text{As we know that, tan}}\dfrac{\pi }{4} = 1 \\
{\text{so,}}\,\,\dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4}\tan x}} = \dfrac{{1 - \tan x}}{{1 + \tan x}}...............(4) \\
$
From (1),(2), (3) and (4) we can say that :
$\tan \left( {\dfrac{\pi }{4} - x} \right)$=$\dfrac{{1 - \tan x}}{{1 + \tan x}}$
Differentiating $\sqrt {\dfrac{{1 - \sin 2x}}{{1 + \sin 2x}}} $ means differentiating $\tan \left( {\dfrac{\pi }{4} - x} \right)$ .
So, we can do ${\left[ {\dfrac{{dy}}{{dx}}} \right]_{x = 0}}$ = $\dfrac{d}{{dx}}\left( {\tan \left( {\dfrac{\pi }{4} - x} \right)} \right) = {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right){\text{ as differentiation of tanx wrt x = se}}{{\text{c}}^2}{\text{x}}{\text{.}}$
On putting x = 0 then we get, ${\sec ^2}\left( {\dfrac{\pi }{4} - 0} \right) = {\sec ^2}\dfrac{\pi }{4} = $2 as $\sec \dfrac{\pi }{4} = \sqrt 2 $.
So, ${\left[ {\dfrac{{dy}}{{dx}}} \right]_{x = 0}}$=2.
Hence the right option is C.
Note: When you have to solve such problems then you have to know the formulas $[{(\cos a \pm \sin a)^2} = {\sin ^2}a + {\cos ^2}a \pm 2\sin a\cos a = 1 \pm \sin 2a]$ and ${\sin ^2}a + {\cos ^2}a$=1 and $2\sin a\cos a = \sin 2a$. Then differentiating according to the general differentiation you will get the right answer.
Complete Step-by-Step solution:
The given equation is $y = \sqrt {\dfrac{{1 - \sin 2x}}{{1 + \sin 2x}}} $ ………(1)
And we know the formula $[{(\cos a \pm \sin a)^2} = {\sin ^2}a + {\cos ^2}a \pm 2\sin a\cos a = 1 \pm \sin 2a]$
Since, ${\sin ^2}a + {\cos ^2}a$=1 and $2\sin a\cos a = \sin 2a$
So we can write equation (1) as :
$
y = \sqrt {\dfrac{{{{(\cos x - \sin x)}^2}}}{{{{(\cos x + \sin x)}^2}}}} = \dfrac{{(\cos x - \sin x)}}{{(\cos x + \sin x)}} \\
{\text{On dividing this equation by }}\cos x{\text{ we get:}} \\
\Rightarrow \dfrac{{1 - \tan x}}{{1 + \tan x}}....................(2) \\
$
And we also know the formula $\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$
$
\tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4}\tan x}}...............(3) \\
{\text{As we know that, tan}}\dfrac{\pi }{4} = 1 \\
{\text{so,}}\,\,\dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4}\tan x}} = \dfrac{{1 - \tan x}}{{1 + \tan x}}...............(4) \\
$
From (1),(2), (3) and (4) we can say that :
$\tan \left( {\dfrac{\pi }{4} - x} \right)$=$\dfrac{{1 - \tan x}}{{1 + \tan x}}$
Differentiating $\sqrt {\dfrac{{1 - \sin 2x}}{{1 + \sin 2x}}} $ means differentiating $\tan \left( {\dfrac{\pi }{4} - x} \right)$ .
So, we can do ${\left[ {\dfrac{{dy}}{{dx}}} \right]_{x = 0}}$ = $\dfrac{d}{{dx}}\left( {\tan \left( {\dfrac{\pi }{4} - x} \right)} \right) = {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right){\text{ as differentiation of tanx wrt x = se}}{{\text{c}}^2}{\text{x}}{\text{.}}$
On putting x = 0 then we get, ${\sec ^2}\left( {\dfrac{\pi }{4} - 0} \right) = {\sec ^2}\dfrac{\pi }{4} = $2 as $\sec \dfrac{\pi }{4} = \sqrt 2 $.
So, ${\left[ {\dfrac{{dy}}{{dx}}} \right]_{x = 0}}$=2.
Hence the right option is C.
Note: When you have to solve such problems then you have to know the formulas $[{(\cos a \pm \sin a)^2} = {\sin ^2}a + {\cos ^2}a \pm 2\sin a\cos a = 1 \pm \sin 2a]$ and ${\sin ^2}a + {\cos ^2}a$=1 and $2\sin a\cos a = \sin 2a$. Then differentiating according to the general differentiation you will get the right answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

