Answer
Verified
437.7k+ views
Hint: Simplifying such equations will give us higher degree equations.
If the equation is a quadratic equation we can either use a splitting middle term method or can use a discriminant method to solve the equation.
Discriminant method: For a quadratic equation ${ax^2}$+bx+c=0, the value of x will be: \[ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{2}\]
Complete step-by-step answer:
Given equation
\[\dfrac{1}{{x + 1}} + \dfrac{2}{{x + 2}} = \dfrac{4}{{x + 4}}\]
Taking L.CM and simplifying the equation we get;
\[ \Rightarrow \dfrac{{x + 2 + 2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x + 2} \right)}} = \dfrac{4}{{x + 4}}\]
\[ \Rightarrow \dfrac{{x + 2 + 2x + 2}}{{{x^2} + 2x + x + 2}} = \dfrac{4}{{x + 4}}\]
\[ \Rightarrow \dfrac{{3x + 4}}{{{x^2} + 3x + 2}} = \dfrac{4}{{x + 4}}\]
Cross- multiplying both sides we get;
\[ \Rightarrow \left( {3x + 4} \right)\left( {x + 4} \right) = 4{x^2} + 12x + 8\]
\[ \Rightarrow 3{x^2} + 12x + 4x + 16 = 4{x^2} + 12x + 8\]
\[ \Rightarrow 3{x^2} + 16x + 16 = 4{x^2} + 12x + 8\]
\[ \Rightarrow {x^2} - 4x - 8 + 0\]
Above equation is a quadratic equation.
Using discriminant method;
\[ \Rightarrow x = \dfrac{{4 \pm \sqrt {16 + 32} }}{2}\]
\[ \Rightarrow x = \dfrac{{4 \pm 4\sqrt 3 }}{2}\]
\[ \Rightarrow x = 2 \pm 2\sqrt 3 \]
Required value for (x) =\[2 \pm 2\sqrt 3 \]
Note: A quadratic equation has degree 2 so the number of roots are also 2.
Depending on the value of (d), the number of roots can be real and distinct, real and equal or complex.
When D > 0, the roots are real and distinct.
When D =0, the roots are real and equal.
When D < 0, the roots are complex.
If the equation is a quadratic equation we can either use a splitting middle term method or can use a discriminant method to solve the equation.
Discriminant method: For a quadratic equation ${ax^2}$+bx+c=0, the value of x will be: \[ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{2}\]
Complete step-by-step answer:
Given equation
\[\dfrac{1}{{x + 1}} + \dfrac{2}{{x + 2}} = \dfrac{4}{{x + 4}}\]
Taking L.CM and simplifying the equation we get;
\[ \Rightarrow \dfrac{{x + 2 + 2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x + 2} \right)}} = \dfrac{4}{{x + 4}}\]
\[ \Rightarrow \dfrac{{x + 2 + 2x + 2}}{{{x^2} + 2x + x + 2}} = \dfrac{4}{{x + 4}}\]
\[ \Rightarrow \dfrac{{3x + 4}}{{{x^2} + 3x + 2}} = \dfrac{4}{{x + 4}}\]
Cross- multiplying both sides we get;
\[ \Rightarrow \left( {3x + 4} \right)\left( {x + 4} \right) = 4{x^2} + 12x + 8\]
\[ \Rightarrow 3{x^2} + 12x + 4x + 16 = 4{x^2} + 12x + 8\]
\[ \Rightarrow 3{x^2} + 16x + 16 = 4{x^2} + 12x + 8\]
\[ \Rightarrow {x^2} - 4x - 8 + 0\]
Above equation is a quadratic equation.
Using discriminant method;
\[ \Rightarrow x = \dfrac{{4 \pm \sqrt {16 + 32} }}{2}\]
\[ \Rightarrow x = \dfrac{{4 \pm 4\sqrt 3 }}{2}\]
\[ \Rightarrow x = 2 \pm 2\sqrt 3 \]
Required value for (x) =\[2 \pm 2\sqrt 3 \]
Note: A quadratic equation has degree 2 so the number of roots are also 2.
Depending on the value of (d), the number of roots can be real and distinct, real and equal or complex.
When D > 0, the roots are real and distinct.
When D =0, the roots are real and equal.
When D < 0, the roots are complex.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE