
Solve for x: \[\dfrac{1}{{x + 1}} + \dfrac{2}{{x + 2}} = \dfrac{4}{{x + 4}}\]
Answer
473.4k+ views
Hint: Simplifying such equations will give us higher degree equations.
If the equation is a quadratic equation we can either use a splitting middle term method or can use a discriminant method to solve the equation.
Discriminant method: For a quadratic equation ${ax^2}$+bx+c=0, the value of x will be: \[ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{2}\]
Complete step-by-step answer:
Given equation
\[\dfrac{1}{{x + 1}} + \dfrac{2}{{x + 2}} = \dfrac{4}{{x + 4}}\]
Taking L.CM and simplifying the equation we get;
\[ \Rightarrow \dfrac{{x + 2 + 2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x + 2} \right)}} = \dfrac{4}{{x + 4}}\]
\[ \Rightarrow \dfrac{{x + 2 + 2x + 2}}{{{x^2} + 2x + x + 2}} = \dfrac{4}{{x + 4}}\]
\[ \Rightarrow \dfrac{{3x + 4}}{{{x^2} + 3x + 2}} = \dfrac{4}{{x + 4}}\]
Cross- multiplying both sides we get;
\[ \Rightarrow \left( {3x + 4} \right)\left( {x + 4} \right) = 4{x^2} + 12x + 8\]
\[ \Rightarrow 3{x^2} + 12x + 4x + 16 = 4{x^2} + 12x + 8\]
\[ \Rightarrow 3{x^2} + 16x + 16 = 4{x^2} + 12x + 8\]
\[ \Rightarrow {x^2} - 4x - 8 + 0\]
Above equation is a quadratic equation.
Using discriminant method;
\[ \Rightarrow x = \dfrac{{4 \pm \sqrt {16 + 32} }}{2}\]
\[ \Rightarrow x = \dfrac{{4 \pm 4\sqrt 3 }}{2}\]
\[ \Rightarrow x = 2 \pm 2\sqrt 3 \]
Required value for (x) =\[2 \pm 2\sqrt 3 \]
Note: A quadratic equation has degree 2 so the number of roots are also 2.
Depending on the value of (d), the number of roots can be real and distinct, real and equal or complex.
When D > 0, the roots are real and distinct.
When D =0, the roots are real and equal.
When D < 0, the roots are complex.
If the equation is a quadratic equation we can either use a splitting middle term method or can use a discriminant method to solve the equation.
Discriminant method: For a quadratic equation ${ax^2}$+bx+c=0, the value of x will be: \[ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{2}\]
Complete step-by-step answer:
Given equation
\[\dfrac{1}{{x + 1}} + \dfrac{2}{{x + 2}} = \dfrac{4}{{x + 4}}\]
Taking L.CM and simplifying the equation we get;
\[ \Rightarrow \dfrac{{x + 2 + 2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x + 2} \right)}} = \dfrac{4}{{x + 4}}\]
\[ \Rightarrow \dfrac{{x + 2 + 2x + 2}}{{{x^2} + 2x + x + 2}} = \dfrac{4}{{x + 4}}\]
\[ \Rightarrow \dfrac{{3x + 4}}{{{x^2} + 3x + 2}} = \dfrac{4}{{x + 4}}\]
Cross- multiplying both sides we get;
\[ \Rightarrow \left( {3x + 4} \right)\left( {x + 4} \right) = 4{x^2} + 12x + 8\]
\[ \Rightarrow 3{x^2} + 12x + 4x + 16 = 4{x^2} + 12x + 8\]
\[ \Rightarrow 3{x^2} + 16x + 16 = 4{x^2} + 12x + 8\]
\[ \Rightarrow {x^2} - 4x - 8 + 0\]
Above equation is a quadratic equation.
Using discriminant method;
\[ \Rightarrow x = \dfrac{{4 \pm \sqrt {16 + 32} }}{2}\]
\[ \Rightarrow x = \dfrac{{4 \pm 4\sqrt 3 }}{2}\]
\[ \Rightarrow x = 2 \pm 2\sqrt 3 \]
Required value for (x) =\[2 \pm 2\sqrt 3 \]
Note: A quadratic equation has degree 2 so the number of roots are also 2.
Depending on the value of (d), the number of roots can be real and distinct, real and equal or complex.
When D > 0, the roots are real and distinct.
When D =0, the roots are real and equal.
When D < 0, the roots are complex.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE
