
Solve by cross-multiplication method:
$\begin{align}
& \left( a-b \right)x+\left( a+b \right)y=2{{a}^{2}}-2{{b}^{2}} \\
& \left( a+b \right)\left( x+y \right)=4ab \\
\end{align}$
Answer
607.2k+ views
Hint: First take all the terms in the given equations to the L.H.S and then assume the two equations as equation (i) and equation (ii). Now, assume that coefficients of x, y and constant term of equation (i) are ${{a}_{1}},{{b}_{1}}$ and ${{c}_{1}}$ respectively and coefficients of x, y and constant term of equation (ii) are ${{a}_{2}},{{b}_{2}}$ and ${{c}_{2}}$ respectively. Now, apply the formula for method of cross-multiplication:
\[\dfrac{x}{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}=\dfrac{y}{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}=\dfrac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\] and equate, \[\dfrac{x}{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}=\dfrac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\] to find the value of x and \[\dfrac{y}{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}=\dfrac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\] to find the value of y.
Complete step-by-step answer:
We have been provided with two equations:
$\begin{align}
& \left( a-b \right)x+\left( a+b \right)y=2{{a}^{2}}-2{{b}^{2}} \\
& \left( a+b \right)\left( x+y \right)=4ab \\
\end{align}$
Taking all the terms to the L.H.S, we get,
$\begin{align}
& \left( a-b \right)x+\left( a+b \right)y+2{{b}^{2}}-2{{a}^{2}}=0 \\
& \left( a+b \right)\left( x+y \right)-4ab=0 \\
\end{align}$
Now, $\left( a+b \right)\left( x+y \right)=4ab$, by multiplying the L.H.S terms it can be written as,
$\left( a+b \right)x+\left( a+b \right)y=4ab$
Now, we have two equations:
$\begin{align}
& \left( a-b \right)x+\left( a+b \right)y+2{{b}^{2}}-2{{a}^{2}}=0.............(i) \\
& \left( a+b \right)x+\left( a+b \right)y-4ab=0..............(ii) \\
\end{align}$
Assuming the coefficients of x, y and constant term of equation (i) as ${{a}_{1}},{{b}_{1}}$ and ${{c}_{1}}$ respectively and coefficients of x, y and constant term of equation (ii) as ${{a}_{2}},{{b}_{2}}$ and ${{c}_{2}}$ respectively, we have,
\[\begin{align}
& {{a}_{1}}=\left( a-b \right),{{b}_{1}}=\left( a+b \right)\text{ and }{{c}_{1}}=2{{b}^{2}}-2{{a}^{2}} \\
& {{a}_{2}}=\left( a+b \right),{{b}_{2}}=\left( a+b \right)\text{ and }{{c}_{2}}=-4ab \\
\end{align}\]
Applying the formula of cross-multiplication method, we have,
\[\dfrac{x}{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}=\dfrac{y}{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}=\dfrac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\]
Therefore, substituting all the values of coefficients, we get,
\[\dfrac{x}{\left( a+b \right)\left( -4ab \right)-\left( a+b \right)\left( 2{{b}^{2}}-2{{a}^{2}} \right)}=\dfrac{y}{\left( 2{{b}^{2}}-2{{a}^{2}} \right)\left( a+b \right)-\left( -4ab \right)\left( a-b \right)}=\dfrac{1}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)}\]
Equating, \[\dfrac{x}{\left( a+b \right)\left( -4ab \right)-\left( a+b \right)\left( 2{{b}^{2}}-2{{a}^{2}} \right)}=\dfrac{1}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)}\], we get,
\[x=\dfrac{\left( a+b \right)\left( -4ab \right)-\left( a+b \right)\left( 2{{b}^{2}}-2{{a}^{2}} \right)}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)}\]
Cancelling the common terms, we get,
\[\begin{align}
& x=\dfrac{\left( a+b \right)\left( -4ab \right)-\left( a+b \right)\left( 2{{b}^{2}}-2{{a}^{2}} \right)}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)} \\
& \Rightarrow x=\dfrac{\left( -4ab \right)-\left( 2{{b}^{2}}-2{{a}^{2}} \right)}{\left( a-b \right)-\left( a+b \right)} \\
& \Rightarrow x=\dfrac{-4ab-2{{b}^{2}}+2{{a}^{2}}}{a-b-a-b} \\
& \Rightarrow x=\dfrac{-4ab-2{{b}^{2}}+2{{a}^{2}}}{-2b} \\
& \Rightarrow x=\dfrac{-2ab-{{b}^{2}}+{{a}^{2}}}{-b} \\
& \Rightarrow x=\dfrac{2ab+{{b}^{2}}-{{a}^{2}}}{b} \\
\end{align}\]
Now equating, \[\dfrac{y}{\left( 2{{b}^{2}}-2{{a}^{2}} \right)\left( a+b \right)-\left( -4ab \right)\left( a-b \right)}=\dfrac{1}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)}\], we get,
\[\Rightarrow y=\dfrac{\left( 2{{b}^{2}}-2{{a}^{2}} \right)\left( a+b \right)-\left( -4ab \right)\left( a-b \right)}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)}\]
Using the algebraic identity: \[\left( {{x}^{2}}-{{y}^{2}} \right)=\left( x+y \right)\left( x-y \right)\], we get,
\[\begin{align}
& y=\dfrac{2\left( b-a \right)\left( b+a \right)\left( a+b \right)-\left( -4ab \right)\left( a-b \right)}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)} \\
& \Rightarrow y=\left( a-b \right)\times \dfrac{2\left( -1 \right)\left( b+a \right)\left( a+b \right)-\left( -4ab \right)}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)} \\
& \Rightarrow y=\left( a-b \right)\times \dfrac{-2{{\left( a+b \right)}^{2}}+4ab}{\left( {{a}^{2}}-{{b}^{2}} \right)-{{\left( a+b \right)}^{2}}} \\
& \Rightarrow y=\left( a-b \right)\times \dfrac{-2{{a}^{2}}-2{{b}^{2}}-4ab+4ab}{\left( {{a}^{2}}-{{b}^{2}} \right)-\left( {{a}^{2}}+{{b}^{2}}+2ab \right)} \\
& \Rightarrow y=\left( a-b \right)\times \dfrac{-2{{a}^{2}}-2{{b}^{2}}}{-2{{b}^{2}}-2ab} \\
& \Rightarrow y=\left( a-b \right)\times \dfrac{-2\left( {{a}^{2}}+{{b}^{2}} \right)}{-2b\left( b+a \right)} \\
& \Rightarrow y=\dfrac{\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}} \right)}{b\left( b+a \right)} \\
\end{align}\]
Note: One may note that we can also solve this question easily by the help of substitution or elimination method but it is asked in the question to solve it with the help of cross-multiplication method. While solving this question, we have to be careful about the formula and calculation. Any one sign mistake can lead us to a wrong answer. We can check our answer by substituting the obtained values of x and y, in the provided equations.
\[\dfrac{x}{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}=\dfrac{y}{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}=\dfrac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\] and equate, \[\dfrac{x}{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}=\dfrac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\] to find the value of x and \[\dfrac{y}{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}=\dfrac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\] to find the value of y.
Complete step-by-step answer:
We have been provided with two equations:
$\begin{align}
& \left( a-b \right)x+\left( a+b \right)y=2{{a}^{2}}-2{{b}^{2}} \\
& \left( a+b \right)\left( x+y \right)=4ab \\
\end{align}$
Taking all the terms to the L.H.S, we get,
$\begin{align}
& \left( a-b \right)x+\left( a+b \right)y+2{{b}^{2}}-2{{a}^{2}}=0 \\
& \left( a+b \right)\left( x+y \right)-4ab=0 \\
\end{align}$
Now, $\left( a+b \right)\left( x+y \right)=4ab$, by multiplying the L.H.S terms it can be written as,
$\left( a+b \right)x+\left( a+b \right)y=4ab$
Now, we have two equations:
$\begin{align}
& \left( a-b \right)x+\left( a+b \right)y+2{{b}^{2}}-2{{a}^{2}}=0.............(i) \\
& \left( a+b \right)x+\left( a+b \right)y-4ab=0..............(ii) \\
\end{align}$
Assuming the coefficients of x, y and constant term of equation (i) as ${{a}_{1}},{{b}_{1}}$ and ${{c}_{1}}$ respectively and coefficients of x, y and constant term of equation (ii) as ${{a}_{2}},{{b}_{2}}$ and ${{c}_{2}}$ respectively, we have,
\[\begin{align}
& {{a}_{1}}=\left( a-b \right),{{b}_{1}}=\left( a+b \right)\text{ and }{{c}_{1}}=2{{b}^{2}}-2{{a}^{2}} \\
& {{a}_{2}}=\left( a+b \right),{{b}_{2}}=\left( a+b \right)\text{ and }{{c}_{2}}=-4ab \\
\end{align}\]
Applying the formula of cross-multiplication method, we have,
\[\dfrac{x}{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}=\dfrac{y}{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}=\dfrac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\]
Therefore, substituting all the values of coefficients, we get,
\[\dfrac{x}{\left( a+b \right)\left( -4ab \right)-\left( a+b \right)\left( 2{{b}^{2}}-2{{a}^{2}} \right)}=\dfrac{y}{\left( 2{{b}^{2}}-2{{a}^{2}} \right)\left( a+b \right)-\left( -4ab \right)\left( a-b \right)}=\dfrac{1}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)}\]
Equating, \[\dfrac{x}{\left( a+b \right)\left( -4ab \right)-\left( a+b \right)\left( 2{{b}^{2}}-2{{a}^{2}} \right)}=\dfrac{1}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)}\], we get,
\[x=\dfrac{\left( a+b \right)\left( -4ab \right)-\left( a+b \right)\left( 2{{b}^{2}}-2{{a}^{2}} \right)}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)}\]
Cancelling the common terms, we get,
\[\begin{align}
& x=\dfrac{\left( a+b \right)\left( -4ab \right)-\left( a+b \right)\left( 2{{b}^{2}}-2{{a}^{2}} \right)}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)} \\
& \Rightarrow x=\dfrac{\left( -4ab \right)-\left( 2{{b}^{2}}-2{{a}^{2}} \right)}{\left( a-b \right)-\left( a+b \right)} \\
& \Rightarrow x=\dfrac{-4ab-2{{b}^{2}}+2{{a}^{2}}}{a-b-a-b} \\
& \Rightarrow x=\dfrac{-4ab-2{{b}^{2}}+2{{a}^{2}}}{-2b} \\
& \Rightarrow x=\dfrac{-2ab-{{b}^{2}}+{{a}^{2}}}{-b} \\
& \Rightarrow x=\dfrac{2ab+{{b}^{2}}-{{a}^{2}}}{b} \\
\end{align}\]
Now equating, \[\dfrac{y}{\left( 2{{b}^{2}}-2{{a}^{2}} \right)\left( a+b \right)-\left( -4ab \right)\left( a-b \right)}=\dfrac{1}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)}\], we get,
\[\Rightarrow y=\dfrac{\left( 2{{b}^{2}}-2{{a}^{2}} \right)\left( a+b \right)-\left( -4ab \right)\left( a-b \right)}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)}\]
Using the algebraic identity: \[\left( {{x}^{2}}-{{y}^{2}} \right)=\left( x+y \right)\left( x-y \right)\], we get,
\[\begin{align}
& y=\dfrac{2\left( b-a \right)\left( b+a \right)\left( a+b \right)-\left( -4ab \right)\left( a-b \right)}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)} \\
& \Rightarrow y=\left( a-b \right)\times \dfrac{2\left( -1 \right)\left( b+a \right)\left( a+b \right)-\left( -4ab \right)}{\left( a-b \right)\left( a+b \right)-\left( a+b \right)\left( a+b \right)} \\
& \Rightarrow y=\left( a-b \right)\times \dfrac{-2{{\left( a+b \right)}^{2}}+4ab}{\left( {{a}^{2}}-{{b}^{2}} \right)-{{\left( a+b \right)}^{2}}} \\
& \Rightarrow y=\left( a-b \right)\times \dfrac{-2{{a}^{2}}-2{{b}^{2}}-4ab+4ab}{\left( {{a}^{2}}-{{b}^{2}} \right)-\left( {{a}^{2}}+{{b}^{2}}+2ab \right)} \\
& \Rightarrow y=\left( a-b \right)\times \dfrac{-2{{a}^{2}}-2{{b}^{2}}}{-2{{b}^{2}}-2ab} \\
& \Rightarrow y=\left( a-b \right)\times \dfrac{-2\left( {{a}^{2}}+{{b}^{2}} \right)}{-2b\left( b+a \right)} \\
& \Rightarrow y=\dfrac{\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}} \right)}{b\left( b+a \right)} \\
\end{align}\]
Note: One may note that we can also solve this question easily by the help of substitution or elimination method but it is asked in the question to solve it with the help of cross-multiplication method. While solving this question, we have to be careful about the formula and calculation. Any one sign mistake can lead us to a wrong answer. We can check our answer by substituting the obtained values of x and y, in the provided equations.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

