
Solve by completing the square method,
\[{x^2} - 2x - 80 = 0\]
Answer
589.5k+ views
Hint: Here since it is given that we have to solve the given equation completing the square method so we will try to make the perfect square by adding and subtracting certain values and evaluating the value of x.
Complete step-by-step answer:
The given equation is:-
\[{x^2} - 2x - 80 = 0\]
Now adding and subtracting 1 we get:-
\[{x^2} - 2x - 80 + 1 - 1 = 0\]
Rearranging it we get:-
\[\left( {{x^2} - 2x + 1} \right) - 80 - 1 = 0\]
Now we know that:-
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Applying this identity we get:-
\[{\left( {x - 1} \right)^2} - 80 - 1 = 0\]
Solving it further we get:-
\[{\left( {x - 1} \right)^2} - 81 = 0\]
\[ \Rightarrow {\left( {x - 1} \right)^2} = 81\]
Now taking square root both the sides we get:-
\[\sqrt {{{\left( {x - 1} \right)}^2}} = \sqrt {81} \]
Simplifying it we get:-
\[x - 1 = \pm 9\]
Hence, \[x - 1 = 9;x - 1 = - 9\]
\[x = 10;x = - 8\]
Therefore,.
Therefore values of x are 10 and -8.
Note: Students can verify their answer by solving the given problem by splitting the middle term method.
The given equation is:-
\[{x^2} - 2x - 80 = 0\]
Applying middle term split we get:-
\[{x^2} - 10x + 8x - 80 = 0\]
Taking terms common we get:-
\[x\left( {x - 10} \right) + 8\left( {x - 10} \right) = 0\]
Simplifying it further we get:-
\[\left( {x + 8} \right)\left( {x - 10} \right) = 0\]
Solving for x we get:-
\[x = - 8;x = 10\]
Complete step-by-step answer:
The given equation is:-
\[{x^2} - 2x - 80 = 0\]
Now adding and subtracting 1 we get:-
\[{x^2} - 2x - 80 + 1 - 1 = 0\]
Rearranging it we get:-
\[\left( {{x^2} - 2x + 1} \right) - 80 - 1 = 0\]
Now we know that:-
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Applying this identity we get:-
\[{\left( {x - 1} \right)^2} - 80 - 1 = 0\]
Solving it further we get:-
\[{\left( {x - 1} \right)^2} - 81 = 0\]
\[ \Rightarrow {\left( {x - 1} \right)^2} = 81\]
Now taking square root both the sides we get:-
\[\sqrt {{{\left( {x - 1} \right)}^2}} = \sqrt {81} \]
Simplifying it we get:-
\[x - 1 = \pm 9\]
Hence, \[x - 1 = 9;x - 1 = - 9\]
\[x = 10;x = - 8\]
Therefore,.
Therefore values of x are 10 and -8.
Note: Students can verify their answer by solving the given problem by splitting the middle term method.
The given equation is:-
\[{x^2} - 2x - 80 = 0\]
Applying middle term split we get:-
\[{x^2} - 10x + 8x - 80 = 0\]
Taking terms common we get:-
\[x\left( {x - 10} \right) + 8\left( {x - 10} \right) = 0\]
Simplifying it further we get:-
\[\left( {x + 8} \right)\left( {x - 10} \right) = 0\]
Solving for x we get:-
\[x = - 8;x = 10\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

