
How do you solve and find the value of $ \sin \left( {{\sin }^{-1}}\left( \dfrac{3}{4} \right) \right) $ ?
Answer
558k+ views
Hint: We know that if the value of sin x is equal to y then we can write $ x={{\sin }^{-1}}y $ where y is in between -1 to 1. We can replace x as $ {{\sin }^{-1}}y $ in $ y=\sin x $ because we have written the formula $ x={{\sin }^{-1}}y $ , so replacing x as $ {{\sin }^{-1}}y $ in $ y=\sin x $ we get $ y=\sin \left( {{\sin }^{-1}}y \right) $ . we can use this formula to find the value of $ \sin \left( {{\sin }^{-1}}\left( \dfrac{3}{4} \right) \right) $
Complete step by step answer:
We have evaluate the value of $ \sin \left( {{\sin }^{-1}}\left( \dfrac{3}{4} \right) \right) $
Let’s assume the value of $ {{\sin }^{-1}}\left( \dfrac{3}{4} \right) $ is equal to x, so we can write $ x={{\sin }^{-1}}\left( \dfrac{3}{4} \right) $ ….eq1
Then $ \dfrac{3}{4} $ is equal to sin x, we can write $ \sin x=\dfrac{3}{4} $ ……eq2
Now we can replace x by $ {{\sin }^{-1}}\left( \dfrac{3}{4} \right) $ in eq2 , we can see in eq1 $ {{\sin }^{-1}}\left( \dfrac{3}{4} \right) $ is equal to x
So by replacing we get
$ \sin \left( {{\sin }^{-1}}\left( \dfrac{3}{4} \right) \right)=\dfrac{3}{4} $
So the value of $ \sin \left( {{\sin }^{-1}}\left( \dfrac{3}{4} \right) \right) $ is equal to $ \dfrac{3}{4} $.
Note:
We can remember $ y=\sin \left( {{\sin }^{-1}}y \right) $ as a standard formula, we don’t have to solve all this. But the reverse is not always true $ {{\sin }^{-1}}\left( \sin y \right) $ is not always equal to y. $ {{\sin }^{-1}}\left( \sin y \right) $ is equal to y when y lies in between $ -\dfrac{\pi }{2} $ to $ \dfrac{\pi }{2} $ because the range of $ {{\sin }^{-1}}x $ is $ -\dfrac{\pi }{2} $ to $ \dfrac{\pi }{2} $ . If the value of y in $ {{\sin }^{-1}}\left( \sin y \right) $ is not lie in the range $ -\dfrac{\pi }{2} $ to $ \dfrac{\pi }{2} $ then we have to find a number x in the range $ -\dfrac{\pi }{2} $ to $ \dfrac{\pi }{2} $ such that sin x = sin y then the value of $ {{\sin }^{-1}}\left( \sin y \right) $ will equal to x. Always remember that the value of $ {{\sin }^{-1}}x $ will exist when x is from -1 to 1. Beyond that $ {{\sin }^{-1}}x $ does not exist.
Complete step by step answer:
We have evaluate the value of $ \sin \left( {{\sin }^{-1}}\left( \dfrac{3}{4} \right) \right) $
Let’s assume the value of $ {{\sin }^{-1}}\left( \dfrac{3}{4} \right) $ is equal to x, so we can write $ x={{\sin }^{-1}}\left( \dfrac{3}{4} \right) $ ….eq1
Then $ \dfrac{3}{4} $ is equal to sin x, we can write $ \sin x=\dfrac{3}{4} $ ……eq2
Now we can replace x by $ {{\sin }^{-1}}\left( \dfrac{3}{4} \right) $ in eq2 , we can see in eq1 $ {{\sin }^{-1}}\left( \dfrac{3}{4} \right) $ is equal to x
So by replacing we get
$ \sin \left( {{\sin }^{-1}}\left( \dfrac{3}{4} \right) \right)=\dfrac{3}{4} $
So the value of $ \sin \left( {{\sin }^{-1}}\left( \dfrac{3}{4} \right) \right) $ is equal to $ \dfrac{3}{4} $.
Note:
We can remember $ y=\sin \left( {{\sin }^{-1}}y \right) $ as a standard formula, we don’t have to solve all this. But the reverse is not always true $ {{\sin }^{-1}}\left( \sin y \right) $ is not always equal to y. $ {{\sin }^{-1}}\left( \sin y \right) $ is equal to y when y lies in between $ -\dfrac{\pi }{2} $ to $ \dfrac{\pi }{2} $ because the range of $ {{\sin }^{-1}}x $ is $ -\dfrac{\pi }{2} $ to $ \dfrac{\pi }{2} $ . If the value of y in $ {{\sin }^{-1}}\left( \sin y \right) $ is not lie in the range $ -\dfrac{\pi }{2} $ to $ \dfrac{\pi }{2} $ then we have to find a number x in the range $ -\dfrac{\pi }{2} $ to $ \dfrac{\pi }{2} $ such that sin x = sin y then the value of $ {{\sin }^{-1}}\left( \sin y \right) $ will equal to x. Always remember that the value of $ {{\sin }^{-1}}x $ will exist when x is from -1 to 1. Beyond that $ {{\sin }^{-1}}x $ does not exist.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

