
How do you solve 3a + 6b + c + 4d = 2, a – 2b + 3c – d = - 3, 2a - 4c + d = - 15 and a + 8b + 2c + d = 6 using matrices?
Answer
551.7k+ views
Hint: The given system of linear equations has 4 equations and 4 unknowns. We can write all the coefficients of variables in a matrix, it will be $4\times 4$ matrix lets call it matrix A . we can write all the variables in another matrix that will be $4\times 1$ matrix let’s call it matrix B. we can see that product of A and B will us a matrix that has all the constant of the equation. If we multiply the inverse of A both sides, we will get the value of all the variables.
Complete step by step answer:
The given equation is 3a + 6b + c + 4d = 2, a – 2b + 3c – d = - 3, 2a - 4c + d = - 15 and a + 8b + 2c + d = 6
Let’s form matrix A of all the coefficients of the variables.
So $A=\left[ \begin{matrix}
3 & 6 & 1 & 4 \\
1 & -2 & 3 & -1 \\
2 & 0 & -4 & 1 \\
1 & 8 & 2 & 1 \\
\end{matrix} \right]$
Let’s form matrix B of all variables
So $B=\left[ \begin{matrix}
a \\
b \\
c \\
d \\
\end{matrix} \right]$
We can write $\left[ \begin{matrix}
3 & 6 & 1 & 4 \\
1 & -2 & 3 & -1 \\
2 & 0 & -4 & 1 \\
1 & 8 & 2 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
a \\
b \\
c \\
d \\
\end{matrix} \right]=\left[ \begin{matrix}
2 \\
-3 \\
-15 \\
6 \\
\end{matrix} \right]$ or $AB=\left[ \begin{matrix}
2 \\
-3 \\
-15 \\
6 \\
\end{matrix} \right]$
So B is equal to ${{A}^{-1}}\left[ \begin{matrix}
2 \\
-3 \\
-15 \\
6 \\
\end{matrix} \right]$. If A is equal to $\left[ \begin{matrix}
3 & 6 & 1 & 4 \\
1 & -2 & 3 & -1 \\
2 & 0 & -4 & 1 \\
1 & 8 & 2 & 1 \\
\end{matrix} \right]$ then ${{A}^{-1}}$ is equal to $\left[ \begin{matrix}
-\dfrac{1}{73} & \dfrac{25}{73} & \dfrac{22}{73} & \dfrac{7}{73} \\
-\dfrac{17}{292} & -\dfrac{13}{292} & \dfrac{9}{292} & \dfrac{23}{146} \\
\dfrac{11}{146} & \dfrac{17}{146} & -\dfrac{23}{146} & -\dfrac{2}{73} \\
\dfrac{24}{73} & -\dfrac{16}{73} & -\dfrac{17}{73} & -\dfrac{22}{73} \\
\end{matrix} \right]$
The value of ${{A}^{-1}}\left[ \begin{matrix}
2 \\
-3 \\
-15 \\
6 \\
\end{matrix} \right]$ is equal to $\left[ \begin{matrix}
-5 \\
\dfrac{1}{2} \\
2 \\
3 \\
\end{matrix} \right]$
So a = -5 , b= $\dfrac{1}{2}$ , c = 2 and d = 3
Note:
In the above solution if the det value of matrix A will equal to 0, then we can find the inverse of matrix A. In that case the system of equations will be inconsistent that means it can have infinite solution or no solution. The system is consistent if it has only a solution.
Complete step by step answer:
The given equation is 3a + 6b + c + 4d = 2, a – 2b + 3c – d = - 3, 2a - 4c + d = - 15 and a + 8b + 2c + d = 6
Let’s form matrix A of all the coefficients of the variables.
So $A=\left[ \begin{matrix}
3 & 6 & 1 & 4 \\
1 & -2 & 3 & -1 \\
2 & 0 & -4 & 1 \\
1 & 8 & 2 & 1 \\
\end{matrix} \right]$
Let’s form matrix B of all variables
So $B=\left[ \begin{matrix}
a \\
b \\
c \\
d \\
\end{matrix} \right]$
We can write $\left[ \begin{matrix}
3 & 6 & 1 & 4 \\
1 & -2 & 3 & -1 \\
2 & 0 & -4 & 1 \\
1 & 8 & 2 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
a \\
b \\
c \\
d \\
\end{matrix} \right]=\left[ \begin{matrix}
2 \\
-3 \\
-15 \\
6 \\
\end{matrix} \right]$ or $AB=\left[ \begin{matrix}
2 \\
-3 \\
-15 \\
6 \\
\end{matrix} \right]$
So B is equal to ${{A}^{-1}}\left[ \begin{matrix}
2 \\
-3 \\
-15 \\
6 \\
\end{matrix} \right]$. If A is equal to $\left[ \begin{matrix}
3 & 6 & 1 & 4 \\
1 & -2 & 3 & -1 \\
2 & 0 & -4 & 1 \\
1 & 8 & 2 & 1 \\
\end{matrix} \right]$ then ${{A}^{-1}}$ is equal to $\left[ \begin{matrix}
-\dfrac{1}{73} & \dfrac{25}{73} & \dfrac{22}{73} & \dfrac{7}{73} \\
-\dfrac{17}{292} & -\dfrac{13}{292} & \dfrac{9}{292} & \dfrac{23}{146} \\
\dfrac{11}{146} & \dfrac{17}{146} & -\dfrac{23}{146} & -\dfrac{2}{73} \\
\dfrac{24}{73} & -\dfrac{16}{73} & -\dfrac{17}{73} & -\dfrac{22}{73} \\
\end{matrix} \right]$
The value of ${{A}^{-1}}\left[ \begin{matrix}
2 \\
-3 \\
-15 \\
6 \\
\end{matrix} \right]$ is equal to $\left[ \begin{matrix}
-5 \\
\dfrac{1}{2} \\
2 \\
3 \\
\end{matrix} \right]$
So a = -5 , b= $\dfrac{1}{2}$ , c = 2 and d = 3
Note:
In the above solution if the det value of matrix A will equal to 0, then we can find the inverse of matrix A. In that case the system of equations will be inconsistent that means it can have infinite solution or no solution. The system is consistent if it has only a solution.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

