
Solve \[1 + \cos 2x + \cos 4x + \cos 6x = \]
A.\[2\cos x\cos 2x\cos 3x\]
B.\[4\sin x\cos 2x\cos 3x\]
C.\[4\cos x\cos 2x\cos 3x\]
D.None of these
Answer
498.3k+ views
Hint: In the given question the addition of trigonometric ratios are given , so we have to use the identity formula for compound angles for \[\cos x\] . First solve for larger angles (\[\cos 4x\]and \[\cos 6x\] ) than for smaller angles . Also , here direct \[1 + \cos 2x\] is given which is equal to \[1 + \cos 2x = 2{\cos ^2}x\]
Complete step-by-step answer:
Given : \[1 + \cos 2x + \cos 4x + \cos 6x\] ,
Applying the identity formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] for \[\cos 4x\]and \[\cos 6x\] we get ,
\[ = 1 + \cos 2x + 2\cos (\dfrac{{6x - 4x}}{2})\cos (\dfrac{{6x + 4x}}{2})\] , on solving we get ,
\[ = 1 + \cos 2x + 2\cos x\cos 5x\]
Now applying formula \[1 + \cos 2x = 2{\cos ^2}x\] we get ,
\[ = 2{\cos ^2}x + 2\cos x\cos 5x\] taking \[2\cos x\]common we get ,
\[ = 2\cos x(\cos x + \cos 5x)\]
Now again applying identity \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] we get ,
\[ = 2\cos x\left[ {2\cos (\dfrac{{5x + x}}{2})\cos (\dfrac{{5x - x}}{2})} \right]\] , on solving we get ,
\[ = 2\cos x\left[ {2\cos 3x\cos 2x} \right]\]
On solving further we get ,
\[ = 4\cos x\cos 2x\cos 3x\] .
Therefore , option ( 3 ) is the correct answer .
So, the correct answer is “Option 3”.
Note: Alternative Method :
Given : \[1 + \cos 2x + \cos 4x + \cos 6x\]
Now , this time taking the terms \[\cos 6x\] and \[\cos 2x\] together and applying the formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] , again we get
\[ = 1 + \cos 4x + 2\cos (\dfrac{{6x - 2x}}{2})\cos (\dfrac{{6x + 2x}}{2})\] , on solving we get ,
\[ = 1 + \cos 4x + 2\cos 2x\cos 4x\]
Now using the formula \[\cos 2x = 2{\cos ^2}x - 1\] we get ,
\[ = 2{\cos ^2}2x + 2\cos 2x\cos 4x\], now taking the \[2\cos 2x\] common we get
\[ = 2\cos 2x(\cos 2x + \cos 4x)\]
Now again applying the formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] we get ,
\[ = 2\cos 2x\left[ {2\cos (\dfrac{{4x - 2x}}{2})\cos (\dfrac{{4x + 2x}}{2})} \right]\] on solving further we get ,
\[ = 2\cos 2x\left[ {2\cos x\cos 3x} \right]\], on simplifying we get
\[ = 4\cos x\cos 2x\cos 3x\] .
Complete step-by-step answer:
Given : \[1 + \cos 2x + \cos 4x + \cos 6x\] ,
Applying the identity formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] for \[\cos 4x\]and \[\cos 6x\] we get ,
\[ = 1 + \cos 2x + 2\cos (\dfrac{{6x - 4x}}{2})\cos (\dfrac{{6x + 4x}}{2})\] , on solving we get ,
\[ = 1 + \cos 2x + 2\cos x\cos 5x\]
Now applying formula \[1 + \cos 2x = 2{\cos ^2}x\] we get ,
\[ = 2{\cos ^2}x + 2\cos x\cos 5x\] taking \[2\cos x\]common we get ,
\[ = 2\cos x(\cos x + \cos 5x)\]
Now again applying identity \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] we get ,
\[ = 2\cos x\left[ {2\cos (\dfrac{{5x + x}}{2})\cos (\dfrac{{5x - x}}{2})} \right]\] , on solving we get ,
\[ = 2\cos x\left[ {2\cos 3x\cos 2x} \right]\]
On solving further we get ,
\[ = 4\cos x\cos 2x\cos 3x\] .
Therefore , option ( 3 ) is the correct answer .
So, the correct answer is “Option 3”.
Note: Alternative Method :
Given : \[1 + \cos 2x + \cos 4x + \cos 6x\]
Now , this time taking the terms \[\cos 6x\] and \[\cos 2x\] together and applying the formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] , again we get
\[ = 1 + \cos 4x + 2\cos (\dfrac{{6x - 2x}}{2})\cos (\dfrac{{6x + 2x}}{2})\] , on solving we get ,
\[ = 1 + \cos 4x + 2\cos 2x\cos 4x\]
Now using the formula \[\cos 2x = 2{\cos ^2}x - 1\] we get ,
\[ = 2{\cos ^2}2x + 2\cos 2x\cos 4x\], now taking the \[2\cos 2x\] common we get
\[ = 2\cos 2x(\cos 2x + \cos 4x)\]
Now again applying the formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] we get ,
\[ = 2\cos 2x\left[ {2\cos (\dfrac{{4x - 2x}}{2})\cos (\dfrac{{4x + 2x}}{2})} \right]\] on solving further we get ,
\[ = 2\cos 2x\left[ {2\cos x\cos 3x} \right]\], on simplifying we get
\[ = 4\cos x\cos 2x\cos 3x\] .
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

State the laws of reflection of light

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

