
Solve \[1 + \cos 2x + \cos 4x + \cos 6x = \]
A.\[2\cos x\cos 2x\cos 3x\]
B.\[4\sin x\cos 2x\cos 3x\]
C.\[4\cos x\cos 2x\cos 3x\]
D.None of these
Answer
494.1k+ views
Hint: In the given question the addition of trigonometric ratios are given , so we have to use the identity formula for compound angles for \[\cos x\] . First solve for larger angles (\[\cos 4x\]and \[\cos 6x\] ) than for smaller angles . Also , here direct \[1 + \cos 2x\] is given which is equal to \[1 + \cos 2x = 2{\cos ^2}x\]
Complete step-by-step answer:
Given : \[1 + \cos 2x + \cos 4x + \cos 6x\] ,
Applying the identity formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] for \[\cos 4x\]and \[\cos 6x\] we get ,
\[ = 1 + \cos 2x + 2\cos (\dfrac{{6x - 4x}}{2})\cos (\dfrac{{6x + 4x}}{2})\] , on solving we get ,
\[ = 1 + \cos 2x + 2\cos x\cos 5x\]
Now applying formula \[1 + \cos 2x = 2{\cos ^2}x\] we get ,
\[ = 2{\cos ^2}x + 2\cos x\cos 5x\] taking \[2\cos x\]common we get ,
\[ = 2\cos x(\cos x + \cos 5x)\]
Now again applying identity \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] we get ,
\[ = 2\cos x\left[ {2\cos (\dfrac{{5x + x}}{2})\cos (\dfrac{{5x - x}}{2})} \right]\] , on solving we get ,
\[ = 2\cos x\left[ {2\cos 3x\cos 2x} \right]\]
On solving further we get ,
\[ = 4\cos x\cos 2x\cos 3x\] .
Therefore , option ( 3 ) is the correct answer .
So, the correct answer is “Option 3”.
Note: Alternative Method :
Given : \[1 + \cos 2x + \cos 4x + \cos 6x\]
Now , this time taking the terms \[\cos 6x\] and \[\cos 2x\] together and applying the formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] , again we get
\[ = 1 + \cos 4x + 2\cos (\dfrac{{6x - 2x}}{2})\cos (\dfrac{{6x + 2x}}{2})\] , on solving we get ,
\[ = 1 + \cos 4x + 2\cos 2x\cos 4x\]
Now using the formula \[\cos 2x = 2{\cos ^2}x - 1\] we get ,
\[ = 2{\cos ^2}2x + 2\cos 2x\cos 4x\], now taking the \[2\cos 2x\] common we get
\[ = 2\cos 2x(\cos 2x + \cos 4x)\]
Now again applying the formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] we get ,
\[ = 2\cos 2x\left[ {2\cos (\dfrac{{4x - 2x}}{2})\cos (\dfrac{{4x + 2x}}{2})} \right]\] on solving further we get ,
\[ = 2\cos 2x\left[ {2\cos x\cos 3x} \right]\], on simplifying we get
\[ = 4\cos x\cos 2x\cos 3x\] .
Complete step-by-step answer:
Given : \[1 + \cos 2x + \cos 4x + \cos 6x\] ,
Applying the identity formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] for \[\cos 4x\]and \[\cos 6x\] we get ,
\[ = 1 + \cos 2x + 2\cos (\dfrac{{6x - 4x}}{2})\cos (\dfrac{{6x + 4x}}{2})\] , on solving we get ,
\[ = 1 + \cos 2x + 2\cos x\cos 5x\]
Now applying formula \[1 + \cos 2x = 2{\cos ^2}x\] we get ,
\[ = 2{\cos ^2}x + 2\cos x\cos 5x\] taking \[2\cos x\]common we get ,
\[ = 2\cos x(\cos x + \cos 5x)\]
Now again applying identity \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] we get ,
\[ = 2\cos x\left[ {2\cos (\dfrac{{5x + x}}{2})\cos (\dfrac{{5x - x}}{2})} \right]\] , on solving we get ,
\[ = 2\cos x\left[ {2\cos 3x\cos 2x} \right]\]
On solving further we get ,
\[ = 4\cos x\cos 2x\cos 3x\] .
Therefore , option ( 3 ) is the correct answer .
So, the correct answer is “Option 3”.
Note: Alternative Method :
Given : \[1 + \cos 2x + \cos 4x + \cos 6x\]
Now , this time taking the terms \[\cos 6x\] and \[\cos 2x\] together and applying the formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] , again we get
\[ = 1 + \cos 4x + 2\cos (\dfrac{{6x - 2x}}{2})\cos (\dfrac{{6x + 2x}}{2})\] , on solving we get ,
\[ = 1 + \cos 4x + 2\cos 2x\cos 4x\]
Now using the formula \[\cos 2x = 2{\cos ^2}x - 1\] we get ,
\[ = 2{\cos ^2}2x + 2\cos 2x\cos 4x\], now taking the \[2\cos 2x\] common we get
\[ = 2\cos 2x(\cos 2x + \cos 4x)\]
Now again applying the formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] we get ,
\[ = 2\cos 2x\left[ {2\cos (\dfrac{{4x - 2x}}{2})\cos (\dfrac{{4x + 2x}}{2})} \right]\] on solving further we get ,
\[ = 2\cos 2x\left[ {2\cos x\cos 3x} \right]\], on simplifying we get
\[ = 4\cos x\cos 2x\cos 3x\] .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

