
What is the smallest angle of rotational symmetry that a regular hexagon has?
Answer
512.7k+ views
Hint: In this problem, we have to find the smallest angle of rotational symmetry that a regular hexagon has. We should first know that a figure has rotational symmetry if it can be rotated by an angle between \[{{0}^{\circ }}\]and \[{{360}^{\circ }}\] so that the image coincides with the preimage. Here we can find the angle of rotations of a regular hexagon and we can find the smallest one among them.
Complete step by step solution:
Here we have to find the smallest angle of the regular hexagon’s rotational symmetry.
We should know that a regular hexagon has 6 sides. We should first know that a figure has rotational symmetry if it can be rotated by an angle between \[{{0}^{\circ }}\]and \[{{360}^{\circ }}\] so that the image coincides with the preimage.
We know that a hexagon has three rotations, so we can write
\[\Rightarrow {{360}^{\circ }}\div 6=60\]
We also know that the angle of rotations of the hexagon are,
\[{{60}^{\circ }},{{120}^{\circ }},{{180}^{\circ }},{{240}^{\circ }},{{300}^{\circ }},{{360}^{\circ }}\]
Where, the smallest rotational angle is \[{{60}^{\circ }}\].
Therefore, the smallest angle of rotational symmetry that a regular hexagon has is \[{{60}^{\circ }}\].
Note: We should remember that the angle of rotational symmetry is the smallest angle for which the figure can be rotated to coincide with itself. The order symmetry is the number of times the figure coincides with itself as it rotates through \[{{360}^{\circ }}\]. We should also know that the order of rotational symmetry is 6.
Complete step by step solution:
Here we have to find the smallest angle of the regular hexagon’s rotational symmetry.
We should know that a regular hexagon has 6 sides. We should first know that a figure has rotational symmetry if it can be rotated by an angle between \[{{0}^{\circ }}\]and \[{{360}^{\circ }}\] so that the image coincides with the preimage.
We know that a hexagon has three rotations, so we can write
\[\Rightarrow {{360}^{\circ }}\div 6=60\]
We also know that the angle of rotations of the hexagon are,
\[{{60}^{\circ }},{{120}^{\circ }},{{180}^{\circ }},{{240}^{\circ }},{{300}^{\circ }},{{360}^{\circ }}\]
Where, the smallest rotational angle is \[{{60}^{\circ }}\].
Therefore, the smallest angle of rotational symmetry that a regular hexagon has is \[{{60}^{\circ }}\].
Note: We should remember that the angle of rotational symmetry is the smallest angle for which the figure can be rotated to coincide with itself. The order symmetry is the number of times the figure coincides with itself as it rotates through \[{{360}^{\circ }}\]. We should also know that the order of rotational symmetry is 6.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

One lakh eight thousand how can we write it in num class 7 maths CBSE

Differentiate between weather and climate How do they class 7 social science CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


