
What is $ \sin \theta $ and $ \cos \theta $ if $ \tan \theta = \dfrac{1}{2} $ and $ \sin \theta > 0 $ ?
Answer
508.5k+ views
Hint: We have to find $ \sin \theta $ and $ \cos \theta $ . Now, we know that $ \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} $ , so we can write $ \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{2} $ . On simplifying it we will get $ \cos \theta = 2\sin \theta $ . We know the formula $ {\sin ^2}\theta + {\cos ^2}\theta = 1 $ and we have the value for $ \cos \theta $ . So, substitute the value of $ \cos \theta $ and find the value of $ \sin \theta $ . After finding the value of $ \sin \theta $ , put it in equation $ \cos \theta = 2\sin \theta $ and you will get the value of $ \cos \theta $ as well.
Formulas used:
$ \Rightarrow \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} $
$ \Rightarrow {\sin ^2}\theta + {\cos ^2}\theta = 1 $
$ \Rightarrow \tan = \dfrac{{{\text{Opposite}}}}{{Adjacent}} = \dfrac{1}{2} $
$ \Rightarrow \sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} $
$ \Rightarrow \cos \theta = \dfrac{{Adjacent}}{{{\text{Hypotenuse}}}} $
Complete step-by-step answer:
In this question, we are given the value of $ \tan \theta $ and we need to find the values of $ \sin \theta $ and $ \cos \theta $ .
$ \Rightarrow \tan \theta = \dfrac{1}{2} $ and $ \sin \theta > 0 $ - - - - - - - - - - (1)
Now, we know that $ \tan \theta $ is $ \sin \theta $ divided by $ \cos \theta $ . So, we can write equation (1) as $ \sin \theta $ divided by $ \cos \theta $ equal to $ \dfrac{1}{2} $ . Therefore, equation (1) becomes
$ \Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{2} $
Cross multiply, we get
$ \Rightarrow \cos \theta = 2\sin \theta $ - - - - - - - - - - (2)
Now, we know that the square of $ \sin \theta $ plus the square of $ \cos \theta $ is always equal to 1.
Therefore, $ {\sin ^2}\theta + {\cos ^2}\theta = 1 $ - - - - - - - - - (3)
Now, from equation (2) substitute $ \cos \theta = 2\sin \theta $ in equation (3). Therefore, we get
$ \Rightarrow {\sin ^2}\theta + {\left( {2\sin \theta } \right)^2} = 1 $
Open the bracket, we get
$
\Rightarrow {\sin ^2}\theta + 4{\sin ^2}\theta = 1 \\
\Rightarrow 5{\sin ^2}\theta = 1 \\
\Rightarrow {\sin ^2}\theta = \dfrac{1}{5} \;
$
Taking square root on both sides, we get
$ \Rightarrow \sin \theta = \pm \sqrt {\dfrac{1}{5}} $
But, according to equation (1), $ \sin \theta > 0 $ . Hence, the value of $ \sin \theta $ cannot be negative.
$ \Rightarrow \sin \theta = \sqrt {\dfrac{1}{5}} = \dfrac{1}{{\sqrt 5 }} $
Rationalizing the above equation, we get
$ \Rightarrow \sin \theta = \dfrac{1}{{\sqrt 5 }} \times \dfrac{{\sqrt 5 }}{{\sqrt 5 }} = \dfrac{{\sqrt 5 }}{5} $
Now, from equation (2),
$ \Rightarrow \cos \theta = 2\sin \theta $
Therefore, $ \cos \theta = 2 \times \dfrac{{\sqrt 5 }}{5} $
$ \Rightarrow \cos \theta = \dfrac{{2\sqrt 5 }}{5} $
Hence, we have got the values of $ \sin \theta $ and $ \cos \theta $ .
Note: Alternate method to solve this question is by drawing the triangle.
We know that $ \tan = \dfrac{{{\text{Opposite}}}}{{Adjacent}} = \dfrac{1}{2} $
Now, in right angled triangle $ ABC $ , using Pythagoras
$
\Rightarrow A{B^2} + B{C^2} = A{C^2} \\
\Rightarrow {1^2} + {2^2} = A{C^2} \\
\Rightarrow A{C^2} = 5 \\
\Rightarrow AC = \pm \sqrt 5 \;
$
Now, we know that
$
\Rightarrow \sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} = \dfrac{{AB}}{{AC}} \\
\Rightarrow \sin \theta = \dfrac{1}{{\sqrt 5 }} \;
$
As $ \sin \theta > 0 $ .
And, the formula for $ \cos \theta $ is
$
\Rightarrow \cos \theta = \dfrac{{Adjacent}}{{{\text{Hypotenuse}}}} = \dfrac{{BC}}{{AC}} \\
\Rightarrow \cos \theta = \dfrac{2}{{\sqrt 5 }} \;
$
Formulas used:
$ \Rightarrow \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} $
$ \Rightarrow {\sin ^2}\theta + {\cos ^2}\theta = 1 $
$ \Rightarrow \tan = \dfrac{{{\text{Opposite}}}}{{Adjacent}} = \dfrac{1}{2} $
$ \Rightarrow \sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} $
$ \Rightarrow \cos \theta = \dfrac{{Adjacent}}{{{\text{Hypotenuse}}}} $
Complete step-by-step answer:
In this question, we are given the value of $ \tan \theta $ and we need to find the values of $ \sin \theta $ and $ \cos \theta $ .
$ \Rightarrow \tan \theta = \dfrac{1}{2} $ and $ \sin \theta > 0 $ - - - - - - - - - - (1)
Now, we know that $ \tan \theta $ is $ \sin \theta $ divided by $ \cos \theta $ . So, we can write equation (1) as $ \sin \theta $ divided by $ \cos \theta $ equal to $ \dfrac{1}{2} $ . Therefore, equation (1) becomes
$ \Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{2} $
Cross multiply, we get
$ \Rightarrow \cos \theta = 2\sin \theta $ - - - - - - - - - - (2)
Now, we know that the square of $ \sin \theta $ plus the square of $ \cos \theta $ is always equal to 1.
Therefore, $ {\sin ^2}\theta + {\cos ^2}\theta = 1 $ - - - - - - - - - (3)
Now, from equation (2) substitute $ \cos \theta = 2\sin \theta $ in equation (3). Therefore, we get
$ \Rightarrow {\sin ^2}\theta + {\left( {2\sin \theta } \right)^2} = 1 $
Open the bracket, we get
$
\Rightarrow {\sin ^2}\theta + 4{\sin ^2}\theta = 1 \\
\Rightarrow 5{\sin ^2}\theta = 1 \\
\Rightarrow {\sin ^2}\theta = \dfrac{1}{5} \;
$
Taking square root on both sides, we get
$ \Rightarrow \sin \theta = \pm \sqrt {\dfrac{1}{5}} $
But, according to equation (1), $ \sin \theta > 0 $ . Hence, the value of $ \sin \theta $ cannot be negative.
$ \Rightarrow \sin \theta = \sqrt {\dfrac{1}{5}} = \dfrac{1}{{\sqrt 5 }} $
Rationalizing the above equation, we get
$ \Rightarrow \sin \theta = \dfrac{1}{{\sqrt 5 }} \times \dfrac{{\sqrt 5 }}{{\sqrt 5 }} = \dfrac{{\sqrt 5 }}{5} $
Now, from equation (2),
$ \Rightarrow \cos \theta = 2\sin \theta $
Therefore, $ \cos \theta = 2 \times \dfrac{{\sqrt 5 }}{5} $
$ \Rightarrow \cos \theta = \dfrac{{2\sqrt 5 }}{5} $
Hence, we have got the values of $ \sin \theta $ and $ \cos \theta $ .
Note: Alternate method to solve this question is by drawing the triangle.
We know that $ \tan = \dfrac{{{\text{Opposite}}}}{{Adjacent}} = \dfrac{1}{2} $
Now, in right angled triangle $ ABC $ , using Pythagoras
$
\Rightarrow A{B^2} + B{C^2} = A{C^2} \\
\Rightarrow {1^2} + {2^2} = A{C^2} \\
\Rightarrow A{C^2} = 5 \\
\Rightarrow AC = \pm \sqrt 5 \;
$
Now, we know that
$
\Rightarrow \sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} = \dfrac{{AB}}{{AC}} \\
\Rightarrow \sin \theta = \dfrac{1}{{\sqrt 5 }} \;
$
As $ \sin \theta > 0 $ .
And, the formula for $ \cos \theta $ is
$
\Rightarrow \cos \theta = \dfrac{{Adjacent}}{{{\text{Hypotenuse}}}} = \dfrac{{BC}}{{AC}} \\
\Rightarrow \cos \theta = \dfrac{2}{{\sqrt 5 }} \;
$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

