
Simplify the given trigonometric expression: $\cot {{12}^{\circ }}\cot {{38}^{\circ }}\cot {{52}^{\circ }}\cot {{60}^{\circ }}\cot {{78}^{\circ }}$.
Answer
576.9k+ views
Hint: We first take the identity formula of trigonometry of $\tan \theta .\cot \theta =1$ and $\cot \left( {{90}^{\circ }}-\theta \right)=\tan \theta $. We use them in two different cases for $\theta ={{12}^{\circ }}$ and $\theta ={{38}^{\circ }}$. We find out the values of them and use those values in the given equation to find the solution of the problem.
Complete step-by-step solution:
We know the trigonometric form $\tan \theta =\dfrac{1}{\cot \theta }\Rightarrow \tan \theta .\cot \theta =1$
We also have $\cot \left( {{90}^{\circ }}-\theta \right)=\tan \theta $.
Now we place the value of ${{12}^{\circ }}$ and ${{38}^{\circ }}$ in place of $\theta $.
So, $\cot \left( {{90}^{\circ }}-{{12}^{\circ }} \right)=\cot {{78}^{\circ }}=\tan {{12}^{\circ }}$ and $\cot \left( {{90}^{\circ }}-{{38}^{\circ }} \right)=\cot {{52}^{\circ }}=\tan {{38}^{\circ }}$.
We have a direct value of $\cot \left( {{60}^{\circ }} \right)=\dfrac{1}{\sqrt{3}}$.
We place all these values in the given equation of $\cot {{12}^{\circ }}\cot {{38}^{\circ }}\cot {{52}^{\circ }}\cot {{60}^{\circ }}\cot {{78}^{\circ }}$.
$\begin{align}
& \cot {{12}^{\circ }}\cot {{38}^{\circ }}\cot {{52}^{\circ }}\cot {{60}^{\circ }}\cot {{78}^{\circ }} \\
& =\left( \cot {{12}^{\circ }}\cot {{78}^{\circ }} \right)\left( \cot {{52}^{\circ }}\cot {{38}^{\circ }} \right)\left( \cot {{60}^{\circ }} \right) \\
& =\left( \cot {{12}^{\circ }}\tan {{12}^{\circ }} \right)\left( \tan {{38}^{\circ }}\cot {{38}^{\circ }} \right)\left( \dfrac{1}{\sqrt{3}} \right) \\
\end{align}$
Now we use the identity $\tan \theta .\cot \theta =1$ for $\theta ={{12}^{\circ }}$ and $\theta ={{38}^{\circ }}$.
So, $\tan \left( {{12}^{\circ }} \right).\cot \left( {{12}^{\circ }} \right)=1$ and $\tan \left( {{38}^{\circ }} \right).\cot \left( {{38}^{\circ }} \right)=1$
The equation becomes
$\begin{align}
& \cot {{12}^{\circ }}\cot {{38}^{\circ }}\cot {{52}^{\circ }}\cot {{60}^{\circ }}\cot {{78}^{\circ }} \\
& =\left( \cot {{12}^{\circ }}\tan {{12}^{\circ }} \right)\left( \tan {{38}^{\circ }}\cot {{38}^{\circ }} \right)\left( \dfrac{1}{\sqrt{3}} \right) \\
& =\left( 1 \right)\left( 1 \right)\left( \dfrac{1}{\sqrt{3}} \right) \\
& =\dfrac{1}{\sqrt{3}} \\
\end{align}$
Therefore, simplification value of $\cot {{12}^{\circ }}\cot {{38}^{\circ }}\cot {{52}^{\circ }}\cot {{60}^{\circ }}\cot {{78}^{\circ }}$ is $\dfrac{1}{\sqrt{3}}$.
Note: We need to remember not to change the usual values of ${{30}^{\circ }}$, ${{45}^{\circ }}$, ${{60}^{\circ }}$ as we have the exact value of those trigonometric angles. We use identity formulas for other non-trivial angles like ${{12}^{\circ }}$, ${{38}^{\circ }}$.
Complete step-by-step solution:
We know the trigonometric form $\tan \theta =\dfrac{1}{\cot \theta }\Rightarrow \tan \theta .\cot \theta =1$
We also have $\cot \left( {{90}^{\circ }}-\theta \right)=\tan \theta $.
Now we place the value of ${{12}^{\circ }}$ and ${{38}^{\circ }}$ in place of $\theta $.
So, $\cot \left( {{90}^{\circ }}-{{12}^{\circ }} \right)=\cot {{78}^{\circ }}=\tan {{12}^{\circ }}$ and $\cot \left( {{90}^{\circ }}-{{38}^{\circ }} \right)=\cot {{52}^{\circ }}=\tan {{38}^{\circ }}$.
We have a direct value of $\cot \left( {{60}^{\circ }} \right)=\dfrac{1}{\sqrt{3}}$.
We place all these values in the given equation of $\cot {{12}^{\circ }}\cot {{38}^{\circ }}\cot {{52}^{\circ }}\cot {{60}^{\circ }}\cot {{78}^{\circ }}$.
$\begin{align}
& \cot {{12}^{\circ }}\cot {{38}^{\circ }}\cot {{52}^{\circ }}\cot {{60}^{\circ }}\cot {{78}^{\circ }} \\
& =\left( \cot {{12}^{\circ }}\cot {{78}^{\circ }} \right)\left( \cot {{52}^{\circ }}\cot {{38}^{\circ }} \right)\left( \cot {{60}^{\circ }} \right) \\
& =\left( \cot {{12}^{\circ }}\tan {{12}^{\circ }} \right)\left( \tan {{38}^{\circ }}\cot {{38}^{\circ }} \right)\left( \dfrac{1}{\sqrt{3}} \right) \\
\end{align}$
Now we use the identity $\tan \theta .\cot \theta =1$ for $\theta ={{12}^{\circ }}$ and $\theta ={{38}^{\circ }}$.
So, $\tan \left( {{12}^{\circ }} \right).\cot \left( {{12}^{\circ }} \right)=1$ and $\tan \left( {{38}^{\circ }} \right).\cot \left( {{38}^{\circ }} \right)=1$
The equation becomes
$\begin{align}
& \cot {{12}^{\circ }}\cot {{38}^{\circ }}\cot {{52}^{\circ }}\cot {{60}^{\circ }}\cot {{78}^{\circ }} \\
& =\left( \cot {{12}^{\circ }}\tan {{12}^{\circ }} \right)\left( \tan {{38}^{\circ }}\cot {{38}^{\circ }} \right)\left( \dfrac{1}{\sqrt{3}} \right) \\
& =\left( 1 \right)\left( 1 \right)\left( \dfrac{1}{\sqrt{3}} \right) \\
& =\dfrac{1}{\sqrt{3}} \\
\end{align}$
Therefore, simplification value of $\cot {{12}^{\circ }}\cot {{38}^{\circ }}\cot {{52}^{\circ }}\cot {{60}^{\circ }}\cot {{78}^{\circ }}$ is $\dfrac{1}{\sqrt{3}}$.
Note: We need to remember not to change the usual values of ${{30}^{\circ }}$, ${{45}^{\circ }}$, ${{60}^{\circ }}$ as we have the exact value of those trigonometric angles. We use identity formulas for other non-trivial angles like ${{12}^{\circ }}$, ${{38}^{\circ }}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

