
Simplify the given problem using the laws of exponents: $\dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}$.
Answer
572.1k+ views
Hint: We start solving the problem by converting all the numbers in both numerator and denominator into the exponential form. We then use the fact ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ in both numerator and denominator to proceed through the problem. We then use the facts $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$ if $m>n$ and $\dfrac{{{a}^{m}}}{{{a}^{n}}}=\dfrac{1}{{{a}^{n-m}}}$ if m < n and make subsequent calculations to get the required value.
Complete step-by-step answer:
According the problem, we need to find the value of $\dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}$ using the laws of exponents.
We have $\dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}$ ---(1).
We need to convert all the numbers that were given in the equations in exponential in order to use the laws of exponents. From equation (1), we can see 81 and 125 are not in exponential form. So, we convert them.
We know that $81={{3}^{4}}$ and $125={{5}^{3}}$. We use these results in equation (1).
$\Rightarrow \dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}=\dfrac{{{3}^{4}}\times {{3}^{8}}\times {{5}^{-5}}}{{{5}^{3}}\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}$---(2).
We know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$. We use this result in equation (2). We use this for the powers of 3 and 5 in both numerator and denominator.
$\Rightarrow \dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}=\dfrac{{{3}^{4+8}}\times {{5}^{-5}}}{{{5}^{3+9}}\times {{3}^{-6+4}}}$.
$\Rightarrow \dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}=\dfrac{{{3}^{12}}\times {{5}^{-5}}}{{{5}^{12}}\times {{3}^{-2}}}$ ---(3).
We know that $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$ if m > n and $\dfrac{{{a}^{m}}}{{{a}^{n}}}=\dfrac{1}{{{a}^{n-m}}}$ if $m < n$. We use this results in equation (3). We can see that the power of 3 in denominator is less than the power of 3 in numerator. We can also see that the power of 3 in denominator is greater than the power of 5 in numerator.
$\Rightarrow \dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}=\dfrac{{{3}^{12-\left( -2 \right)}}}{{{5}^{12-\left( -5 \right)}}}$.
$\Rightarrow \dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}=\dfrac{{{3}^{12+2}}}{{{5}^{12+5}}}$.
$\Rightarrow \dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}=\dfrac{{{3}^{14}}}{{{5}^{17}}}$.
We have found the value of $\dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}$ as $\dfrac{{{3}^{14}}}{{{5}^{17}}}$.
∴ The value of $\dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}$ is $\dfrac{{{3}^{14}}}{{{5}^{17}}}$.
Note: We should not always use the fact $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$ as it is only true for $m>n$. We can see from the final answer all the elements in both numerator and denominator are in terms of powers. We should not make any mistakes while performing addition and subtraction operations. Similarly, we can expect the problems that requires to use the following facts: ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ and also the equations that contain equalities to find the value of certain variable.
Complete step-by-step answer:
According the problem, we need to find the value of $\dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}$ using the laws of exponents.
We have $\dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}$ ---(1).
We need to convert all the numbers that were given in the equations in exponential in order to use the laws of exponents. From equation (1), we can see 81 and 125 are not in exponential form. So, we convert them.
We know that $81={{3}^{4}}$ and $125={{5}^{3}}$. We use these results in equation (1).
$\Rightarrow \dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}=\dfrac{{{3}^{4}}\times {{3}^{8}}\times {{5}^{-5}}}{{{5}^{3}}\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}$---(2).
We know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$. We use this result in equation (2). We use this for the powers of 3 and 5 in both numerator and denominator.
$\Rightarrow \dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}=\dfrac{{{3}^{4+8}}\times {{5}^{-5}}}{{{5}^{3+9}}\times {{3}^{-6+4}}}$.
$\Rightarrow \dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}=\dfrac{{{3}^{12}}\times {{5}^{-5}}}{{{5}^{12}}\times {{3}^{-2}}}$ ---(3).
We know that $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$ if m > n and $\dfrac{{{a}^{m}}}{{{a}^{n}}}=\dfrac{1}{{{a}^{n-m}}}$ if $m < n$. We use this results in equation (3). We can see that the power of 3 in denominator is less than the power of 3 in numerator. We can also see that the power of 3 in denominator is greater than the power of 5 in numerator.
$\Rightarrow \dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}=\dfrac{{{3}^{12-\left( -2 \right)}}}{{{5}^{12-\left( -5 \right)}}}$.
$\Rightarrow \dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}=\dfrac{{{3}^{12+2}}}{{{5}^{12+5}}}$.
$\Rightarrow \dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}=\dfrac{{{3}^{14}}}{{{5}^{17}}}$.
We have found the value of $\dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}$ as $\dfrac{{{3}^{14}}}{{{5}^{17}}}$.
∴ The value of $\dfrac{81\times {{3}^{8}}\times {{5}^{-5}}}{125\times {{3}^{-6}}\times {{3}^{4}}\times {{5}^{9}}}$ is $\dfrac{{{3}^{14}}}{{{5}^{17}}}$.
Note: We should not always use the fact $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$ as it is only true for $m>n$. We can see from the final answer all the elements in both numerator and denominator are in terms of powers. We should not make any mistakes while performing addition and subtraction operations. Similarly, we can expect the problems that requires to use the following facts: ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ and also the equations that contain equalities to find the value of certain variable.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

