
Simplify the given expression.
$ \sin \left( {\pi - \theta } \right) + \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) + \sin \left( {\pi + \theta } \right) + \cos \left( {\dfrac{{3\pi }}{2} - \theta } \right) $
Answer
614.4k+ views
Hint: In this particular type of question we need to simplify the trigonometric functions by using the formulas of $ \sin \left( {\pi - \theta } \right) = \sin \theta ,\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \cos \theta ,\sin \left( {\pi + \theta } \right) = - \sin \theta {\text{ and }}\cos \left( {\dfrac{{3\pi }}{2} - \theta } \right) = - \cos \theta $ keeping in mind their signs in different quadrants. After simplifying we need to solve the trigonometric equation to get the desired answer.
Complete step-by-step answer:
The expression given is,
$ \sin \left( {\pi - \theta } \right) + \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) + \sin \left( {\pi + \theta } \right) + \cos \left( {\dfrac{{3\pi }}{2} - \theta } \right) $
Now we will substitute the terms by the trigonometry formula. i.e.
$ \sin \left( {\pi - \theta } \right) = \sin \theta ,\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \cos \theta ,\sin \left( {\pi + \theta } \right) = - \sin \theta {\text{ and }}\cos \left( {\dfrac{{3\pi }}{2} - \theta } \right) = - \cos \theta $
$ \begin{gathered}
\Rightarrow \sin \theta + \cos \theta - \sin \theta - \cos \theta \\
= 0 \\
\end{gathered} $
( Since sin $ \theta $ is positive in $ \pi - \theta $ and negative in $ \pi + \theta $ and cos $ \theta $ is positive in $ \dfrac{{3\pi }}{2} + \theta $ and negative in $ \dfrac{{3\pi }}{2} - \theta $ )
Note-
It is important to recall that Sin and Cos are positive in the first - second quadrant and the first fourth - quadrant respectively. Note that Sin and Cos are both positive in the first quadrant but differ in the others.
Complete step-by-step answer:
The expression given is,
$ \sin \left( {\pi - \theta } \right) + \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) + \sin \left( {\pi + \theta } \right) + \cos \left( {\dfrac{{3\pi }}{2} - \theta } \right) $
Now we will substitute the terms by the trigonometry formula. i.e.
$ \sin \left( {\pi - \theta } \right) = \sin \theta ,\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \cos \theta ,\sin \left( {\pi + \theta } \right) = - \sin \theta {\text{ and }}\cos \left( {\dfrac{{3\pi }}{2} - \theta } \right) = - \cos \theta $
$ \begin{gathered}
\Rightarrow \sin \theta + \cos \theta - \sin \theta - \cos \theta \\
= 0 \\
\end{gathered} $
( Since sin $ \theta $ is positive in $ \pi - \theta $ and negative in $ \pi + \theta $ and cos $ \theta $ is positive in $ \dfrac{{3\pi }}{2} + \theta $ and negative in $ \dfrac{{3\pi }}{2} - \theta $ )
Note-
It is important to recall that Sin and Cos are positive in the first - second quadrant and the first fourth - quadrant respectively. Note that Sin and Cos are both positive in the first quadrant but differ in the others.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

