
Simplify the given expression $\dfrac{{3 + \sqrt 6 }}{{\sqrt {75} - \sqrt {48} - \sqrt {32} + \sqrt {50} }}$
(A)$\sqrt 2 $
(B)$\sqrt 3 $
(C) $\sqrt 3 + \sqrt 2 $
(D)$\sqrt 3 - \sqrt 2 $
Answer
511.8k+ views
Hint: To solve the root of number find out the prime factorization of numbers and then rationalize the denominator.
Complete step-by-step answer:
Step 1: Solve the roots given in denominator-
$\sqrt {75} = \sqrt {3 \times 5 \times 5} = \sqrt {3 \times (5 \times 5)} = 5\sqrt 3 $
$\sqrt {48} = \sqrt {2 \times 2 \times 2 \times 2 \times 3} = \sqrt {(2 \times 2) \times (2 \times 2) \times 3} = (2) \times (2)\sqrt 3 = 4\sqrt 3 $
$\sqrt {32} = \sqrt {2 \times 2 \times 2 \times 2 \times 2} = \sqrt {(2 \times 2) \times (2 \times 2) \times 2} = (2) \times (2)\sqrt 3 = 4\sqrt 2 $
$\sqrt {50} = \sqrt {2 \times 5 \times 5} = \sqrt {2 \times (5 \times 5)} = 5\sqrt 2 $
Step 2: Put the values of above roots in given expression-
$\dfrac{{3 + \sqrt 6 }}{{\sqrt {75} - \sqrt {48} - \sqrt {32} + \sqrt {50} }} = \dfrac{{3 + \sqrt 6 }}{{5\sqrt 3 - 4\sqrt 3 - 4\sqrt 2 + 5\sqrt 2 }}$
Step 3: Solve the like terms-
$\dfrac{{3 + \sqrt 6 }}{{(5\sqrt 3 - 4\sqrt 3 ) + ( - 4\sqrt 2 + 5\sqrt 2 )}} = \dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }}$
Step 4: Rationalize the denominator-
$\dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }} = \dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }} \times \dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$$ = \dfrac{{(3 + \sqrt 6 )(\sqrt 3 - \sqrt 2 )}}{{(\sqrt 3 + \sqrt 2 )(\sqrt 3 - \sqrt 2 )}}$
Using Formula in denominator $(a - b)(a + b) = {a^2} - {b^2}$
Therefore, $\dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }} = \dfrac{{3 \cdot \sqrt 3 - 3 \cdot \sqrt 2 + \sqrt 6 \sqrt 3 - \sqrt 6 \sqrt 2 }}{{{{(\sqrt 3 )}^2} - {{(\sqrt 2 )}^2}}}$
$ = \dfrac{{3\sqrt 3 - 3\sqrt 2 + \sqrt {2 \times 3} \sqrt 3 - \sqrt {2 \times 3} \sqrt 2 }}{{3 - 2}}$
$ = \sqrt 3 (3 - 2) = \sqrt 3 $
Hence, Option (B) is correct.
Additional Information:
1. BASIC FORMULAS -
Some important basic formulas need to remember-
${(a + b)^2} = {a^2} + {b^2} + 2a \cdot b$
${(a - b)^2} = {a^2} + {b^2} - 2a \cdot b$
$(a - b)(a + b) = {a^2} - {b^2}$
2. SQUARE ROOT USING PRIME FACTORIZATION LAW -
To find the square root of the given number through prime factorization method we follow the following steps:
(i) First we divide the given number into its prime factor.
(ii) Make the pair of similar factors such that the both factors in each pair are equal.
(iii) Take one factor from the pair.
(iv) Find the product of factors obtained by taking one factor from each pair.
That product is the square root of the given number.
For Example:
To find the square root of 256.
Complete step-by-step answer:
Step 1: Solve the roots given in denominator-
$\sqrt {75} = \sqrt {3 \times 5 \times 5} = \sqrt {3 \times (5 \times 5)} = 5\sqrt 3 $
$\sqrt {48} = \sqrt {2 \times 2 \times 2 \times 2 \times 3} = \sqrt {(2 \times 2) \times (2 \times 2) \times 3} = (2) \times (2)\sqrt 3 = 4\sqrt 3 $
$\sqrt {32} = \sqrt {2 \times 2 \times 2 \times 2 \times 2} = \sqrt {(2 \times 2) \times (2 \times 2) \times 2} = (2) \times (2)\sqrt 3 = 4\sqrt 2 $
$\sqrt {50} = \sqrt {2 \times 5 \times 5} = \sqrt {2 \times (5 \times 5)} = 5\sqrt 2 $
Step 2: Put the values of above roots in given expression-
$\dfrac{{3 + \sqrt 6 }}{{\sqrt {75} - \sqrt {48} - \sqrt {32} + \sqrt {50} }} = \dfrac{{3 + \sqrt 6 }}{{5\sqrt 3 - 4\sqrt 3 - 4\sqrt 2 + 5\sqrt 2 }}$
Step 3: Solve the like terms-
$\dfrac{{3 + \sqrt 6 }}{{(5\sqrt 3 - 4\sqrt 3 ) + ( - 4\sqrt 2 + 5\sqrt 2 )}} = \dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }}$
Step 4: Rationalize the denominator-
$\dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }} = \dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }} \times \dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$$ = \dfrac{{(3 + \sqrt 6 )(\sqrt 3 - \sqrt 2 )}}{{(\sqrt 3 + \sqrt 2 )(\sqrt 3 - \sqrt 2 )}}$
Using Formula in denominator $(a - b)(a + b) = {a^2} - {b^2}$
Therefore, $\dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }} = \dfrac{{3 \cdot \sqrt 3 - 3 \cdot \sqrt 2 + \sqrt 6 \sqrt 3 - \sqrt 6 \sqrt 2 }}{{{{(\sqrt 3 )}^2} - {{(\sqrt 2 )}^2}}}$
$ = \dfrac{{3\sqrt 3 - 3\sqrt 2 + \sqrt {2 \times 3} \sqrt 3 - \sqrt {2 \times 3} \sqrt 2 }}{{3 - 2}}$
$ = \sqrt 3 (3 - 2) = \sqrt 3 $
Hence, Option (B) is correct.
Additional Information:
1. BASIC FORMULAS -
Some important basic formulas need to remember-
${(a + b)^2} = {a^2} + {b^2} + 2a \cdot b$
${(a - b)^2} = {a^2} + {b^2} - 2a \cdot b$
$(a - b)(a + b) = {a^2} - {b^2}$
2. SQUARE ROOT USING PRIME FACTORIZATION LAW -
To find the square root of the given number through prime factorization method we follow the following steps:
(i) First we divide the given number into its prime factor.
(ii) Make the pair of similar factors such that the both factors in each pair are equal.
(iii) Take one factor from the pair.
(iv) Find the product of factors obtained by taking one factor from each pair.
That product is the square root of the given number.
For Example:
To find the square root of 256.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

The southernmost point of the Indian mainland is known class 7 social studies CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

How many crores make 10 million class 7 maths CBSE

One lakh eight thousand how can we write it in num class 7 maths CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE
