
Simplify the given expression $\dfrac{{3 + \sqrt 6 }}{{\sqrt {75} - \sqrt {48} - \sqrt {32} + \sqrt {50} }}$
(A)$\sqrt 2 $
(B)$\sqrt 3 $
(C) $\sqrt 3 + \sqrt 2 $
(D)$\sqrt 3 - \sqrt 2 $
Answer
589.5k+ views
Hint: To solve the root of number find out the prime factorization of numbers and then rationalize the denominator.
Complete step-by-step answer:
Step 1: Solve the roots given in denominator-
$\sqrt {75} = \sqrt {3 \times 5 \times 5} = \sqrt {3 \times (5 \times 5)} = 5\sqrt 3 $
$\sqrt {48} = \sqrt {2 \times 2 \times 2 \times 2 \times 3} = \sqrt {(2 \times 2) \times (2 \times 2) \times 3} = (2) \times (2)\sqrt 3 = 4\sqrt 3 $
$\sqrt {32} = \sqrt {2 \times 2 \times 2 \times 2 \times 2} = \sqrt {(2 \times 2) \times (2 \times 2) \times 2} = (2) \times (2)\sqrt 3 = 4\sqrt 2 $
$\sqrt {50} = \sqrt {2 \times 5 \times 5} = \sqrt {2 \times (5 \times 5)} = 5\sqrt 2 $
Step 2: Put the values of above roots in given expression-
$\dfrac{{3 + \sqrt 6 }}{{\sqrt {75} - \sqrt {48} - \sqrt {32} + \sqrt {50} }} = \dfrac{{3 + \sqrt 6 }}{{5\sqrt 3 - 4\sqrt 3 - 4\sqrt 2 + 5\sqrt 2 }}$
Step 3: Solve the like terms-
$\dfrac{{3 + \sqrt 6 }}{{(5\sqrt 3 - 4\sqrt 3 ) + ( - 4\sqrt 2 + 5\sqrt 2 )}} = \dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }}$
Step 4: Rationalize the denominator-
$\dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }} = \dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }} \times \dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$$ = \dfrac{{(3 + \sqrt 6 )(\sqrt 3 - \sqrt 2 )}}{{(\sqrt 3 + \sqrt 2 )(\sqrt 3 - \sqrt 2 )}}$
Using Formula in denominator $(a - b)(a + b) = {a^2} - {b^2}$
Therefore, $\dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }} = \dfrac{{3 \cdot \sqrt 3 - 3 \cdot \sqrt 2 + \sqrt 6 \sqrt 3 - \sqrt 6 \sqrt 2 }}{{{{(\sqrt 3 )}^2} - {{(\sqrt 2 )}^2}}}$
$ = \dfrac{{3\sqrt 3 - 3\sqrt 2 + \sqrt {2 \times 3} \sqrt 3 - \sqrt {2 \times 3} \sqrt 2 }}{{3 - 2}}$
$ = \sqrt 3 (3 - 2) = \sqrt 3 $
Hence, Option (B) is correct.
Additional Information:
1. BASIC FORMULAS -
Some important basic formulas need to remember-
${(a + b)^2} = {a^2} + {b^2} + 2a \cdot b$
${(a - b)^2} = {a^2} + {b^2} - 2a \cdot b$
$(a - b)(a + b) = {a^2} - {b^2}$
2. SQUARE ROOT USING PRIME FACTORIZATION LAW -
To find the square root of the given number through prime factorization method we follow the following steps:
(i) First we divide the given number into its prime factor.
(ii) Make the pair of similar factors such that the both factors in each pair are equal.
(iii) Take one factor from the pair.
(iv) Find the product of factors obtained by taking one factor from each pair.
That product is the square root of the given number.
For Example:
To find the square root of 256.
Complete step-by-step answer:
Step 1: Solve the roots given in denominator-
$\sqrt {75} = \sqrt {3 \times 5 \times 5} = \sqrt {3 \times (5 \times 5)} = 5\sqrt 3 $
$\sqrt {48} = \sqrt {2 \times 2 \times 2 \times 2 \times 3} = \sqrt {(2 \times 2) \times (2 \times 2) \times 3} = (2) \times (2)\sqrt 3 = 4\sqrt 3 $
$\sqrt {32} = \sqrt {2 \times 2 \times 2 \times 2 \times 2} = \sqrt {(2 \times 2) \times (2 \times 2) \times 2} = (2) \times (2)\sqrt 3 = 4\sqrt 2 $
$\sqrt {50} = \sqrt {2 \times 5 \times 5} = \sqrt {2 \times (5 \times 5)} = 5\sqrt 2 $
Step 2: Put the values of above roots in given expression-
$\dfrac{{3 + \sqrt 6 }}{{\sqrt {75} - \sqrt {48} - \sqrt {32} + \sqrt {50} }} = \dfrac{{3 + \sqrt 6 }}{{5\sqrt 3 - 4\sqrt 3 - 4\sqrt 2 + 5\sqrt 2 }}$
Step 3: Solve the like terms-
$\dfrac{{3 + \sqrt 6 }}{{(5\sqrt 3 - 4\sqrt 3 ) + ( - 4\sqrt 2 + 5\sqrt 2 )}} = \dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }}$
Step 4: Rationalize the denominator-
$\dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }} = \dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }} \times \dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$$ = \dfrac{{(3 + \sqrt 6 )(\sqrt 3 - \sqrt 2 )}}{{(\sqrt 3 + \sqrt 2 )(\sqrt 3 - \sqrt 2 )}}$
Using Formula in denominator $(a - b)(a + b) = {a^2} - {b^2}$
Therefore, $\dfrac{{3 + \sqrt 6 }}{{\sqrt 3 + \sqrt 2 }} = \dfrac{{3 \cdot \sqrt 3 - 3 \cdot \sqrt 2 + \sqrt 6 \sqrt 3 - \sqrt 6 \sqrt 2 }}{{{{(\sqrt 3 )}^2} - {{(\sqrt 2 )}^2}}}$
$ = \dfrac{{3\sqrt 3 - 3\sqrt 2 + \sqrt {2 \times 3} \sqrt 3 - \sqrt {2 \times 3} \sqrt 2 }}{{3 - 2}}$
$ = \sqrt 3 (3 - 2) = \sqrt 3 $
Hence, Option (B) is correct.
Additional Information:
1. BASIC FORMULAS -
Some important basic formulas need to remember-
${(a + b)^2} = {a^2} + {b^2} + 2a \cdot b$
${(a - b)^2} = {a^2} + {b^2} - 2a \cdot b$
$(a - b)(a + b) = {a^2} - {b^2}$
2. SQUARE ROOT USING PRIME FACTORIZATION LAW -
To find the square root of the given number through prime factorization method we follow the following steps:
(i) First we divide the given number into its prime factor.
(ii) Make the pair of similar factors such that the both factors in each pair are equal.
(iii) Take one factor from the pair.
(iv) Find the product of factors obtained by taking one factor from each pair.
That product is the square root of the given number.
For Example:
To find the square root of 256.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What are the factors of 100 class 7 maths CBSE

The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write a letter to the editor of the national daily class 7 english CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


