
Simplify the following expression $\sin 420^\circ \cos 330^\circ + \cos \left( { - 300^\circ } \right)\sin 150^\circ = $
Answer
596.4k+ views
Hint – We will start solving this question by noting down the given trigonometric functions and their given angles. Then by adding and subtracting some associated angles of trigonometry and after the calculation process we will get the required result.
Complete step-by-step answer:
Here, it is given that,
$\sin 420^\circ \cos 330^\circ + \cos \left( { - 300^\circ } \right)\sin 150^\circ $ ………….. (1)
We have no values of $\sin 420^\circ ,\cos 330^\circ ,\cos \left( { - 300^\circ } \right)$ and $\sin 150^\circ $.
So, we will use some associated angles of trigonometry to find and value and get the required result.
First we will find the value of $\sin 420^\circ $, we get,
$\sin 420^\circ $
$ = \sin \left( {360^\circ + 60^\circ } \right)$
We know that $\sin \left( {360^\circ + \theta } \right) = \sin \theta $, therefore,
$
\sin 60^\circ \\
= \dfrac{{\sqrt 3 }}{2} \\
$
Now, we will find the value of $\cos 330^\circ $, we obtain,
$\cos 330^\circ $
$ = \cos \left( {360^\circ - 30^\circ } \right)$
We know that $\cos \left( {360^\circ - \theta } \right) = \cos \theta $, therefore,
$
\cos 30^\circ \\
= \dfrac{{\sqrt 3 }}{2} \\
$
Now, we will find the value of $\cos \left( { - 300^\circ } \right)$, we obtain,
$\cos \left( { - 300^\circ } \right)$
$ = \cos 300^\circ $
$ = \cos \left( {360^\circ - 60^\circ } \right)$
We know that $\cos \left( {360^\circ - \theta } \right) = \cos \theta $, therefore,
$
\cos 60^\circ \\
= \dfrac{1}{2} \\
$
Now, we will find the value of $\sin 150^\circ $, we get,
$
\sin 150^\circ \\
= \sin \left( {180^\circ - 30^\circ } \right) \\
$
We know that $\sin \left( {180^\circ - \theta } \right) = \sin \theta $, therefore.
$
\sin 30^\circ \\
= \dfrac{1}{2} \\
$
Now,
$\sin 420^\circ \cos 330^\circ + \cos \left( { - 300^\circ } \right)\sin 150^\circ $$ = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times \dfrac{1}{2}$
$
= \dfrac{{{{\left( {\sqrt 3 } \right)}^2}}}{4} + \dfrac{1}{4} \\
= \dfrac{3}{4} + \dfrac{1}{4} \\
= \dfrac{{3 + 1}}{4} \\
= \dfrac{4}{4} \\
= 1 \\
$
Note – Trigonometric angles are the angles given by the ratios of the trigonometric functions. The angle value ranges from 0-360 degrees. These questions are very simple and easy to solve, however, all the basic formulas and the values of the associated angles of trigonometry must be remembered.
Complete step-by-step answer:
Here, it is given that,
$\sin 420^\circ \cos 330^\circ + \cos \left( { - 300^\circ } \right)\sin 150^\circ $ ………….. (1)
We have no values of $\sin 420^\circ ,\cos 330^\circ ,\cos \left( { - 300^\circ } \right)$ and $\sin 150^\circ $.
So, we will use some associated angles of trigonometry to find and value and get the required result.
First we will find the value of $\sin 420^\circ $, we get,
$\sin 420^\circ $
$ = \sin \left( {360^\circ + 60^\circ } \right)$
We know that $\sin \left( {360^\circ + \theta } \right) = \sin \theta $, therefore,
$
\sin 60^\circ \\
= \dfrac{{\sqrt 3 }}{2} \\
$
Now, we will find the value of $\cos 330^\circ $, we obtain,
$\cos 330^\circ $
$ = \cos \left( {360^\circ - 30^\circ } \right)$
We know that $\cos \left( {360^\circ - \theta } \right) = \cos \theta $, therefore,
$
\cos 30^\circ \\
= \dfrac{{\sqrt 3 }}{2} \\
$
Now, we will find the value of $\cos \left( { - 300^\circ } \right)$, we obtain,
$\cos \left( { - 300^\circ } \right)$
$ = \cos 300^\circ $
$ = \cos \left( {360^\circ - 60^\circ } \right)$
We know that $\cos \left( {360^\circ - \theta } \right) = \cos \theta $, therefore,
$
\cos 60^\circ \\
= \dfrac{1}{2} \\
$
Now, we will find the value of $\sin 150^\circ $, we get,
$
\sin 150^\circ \\
= \sin \left( {180^\circ - 30^\circ } \right) \\
$
We know that $\sin \left( {180^\circ - \theta } \right) = \sin \theta $, therefore.
$
\sin 30^\circ \\
= \dfrac{1}{2} \\
$
Now,
$\sin 420^\circ \cos 330^\circ + \cos \left( { - 300^\circ } \right)\sin 150^\circ $$ = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times \dfrac{1}{2}$
$
= \dfrac{{{{\left( {\sqrt 3 } \right)}^2}}}{4} + \dfrac{1}{4} \\
= \dfrac{3}{4} + \dfrac{1}{4} \\
= \dfrac{{3 + 1}}{4} \\
= \dfrac{4}{4} \\
= 1 \\
$
Note – Trigonometric angles are the angles given by the ratios of the trigonometric functions. The angle value ranges from 0-360 degrees. These questions are very simple and easy to solve, however, all the basic formulas and the values of the associated angles of trigonometry must be remembered.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

