
Simplify the following expression $\sin 420^\circ \cos 330^\circ + \cos \left( { - 300^\circ } \right)\sin 150^\circ = $
Answer
597.3k+ views
Hint – We will start solving this question by noting down the given trigonometric functions and their given angles. Then by adding and subtracting some associated angles of trigonometry and after the calculation process we will get the required result.
Complete step-by-step answer:
Here, it is given that,
$\sin 420^\circ \cos 330^\circ + \cos \left( { - 300^\circ } \right)\sin 150^\circ $ ………….. (1)
We have no values of $\sin 420^\circ ,\cos 330^\circ ,\cos \left( { - 300^\circ } \right)$ and $\sin 150^\circ $.
So, we will use some associated angles of trigonometry to find and value and get the required result.
First we will find the value of $\sin 420^\circ $, we get,
$\sin 420^\circ $
$ = \sin \left( {360^\circ + 60^\circ } \right)$
We know that $\sin \left( {360^\circ + \theta } \right) = \sin \theta $, therefore,
$
\sin 60^\circ \\
= \dfrac{{\sqrt 3 }}{2} \\
$
Now, we will find the value of $\cos 330^\circ $, we obtain,
$\cos 330^\circ $
$ = \cos \left( {360^\circ - 30^\circ } \right)$
We know that $\cos \left( {360^\circ - \theta } \right) = \cos \theta $, therefore,
$
\cos 30^\circ \\
= \dfrac{{\sqrt 3 }}{2} \\
$
Now, we will find the value of $\cos \left( { - 300^\circ } \right)$, we obtain,
$\cos \left( { - 300^\circ } \right)$
$ = \cos 300^\circ $
$ = \cos \left( {360^\circ - 60^\circ } \right)$
We know that $\cos \left( {360^\circ - \theta } \right) = \cos \theta $, therefore,
$
\cos 60^\circ \\
= \dfrac{1}{2} \\
$
Now, we will find the value of $\sin 150^\circ $, we get,
$
\sin 150^\circ \\
= \sin \left( {180^\circ - 30^\circ } \right) \\
$
We know that $\sin \left( {180^\circ - \theta } \right) = \sin \theta $, therefore.
$
\sin 30^\circ \\
= \dfrac{1}{2} \\
$
Now,
$\sin 420^\circ \cos 330^\circ + \cos \left( { - 300^\circ } \right)\sin 150^\circ $$ = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times \dfrac{1}{2}$
$
= \dfrac{{{{\left( {\sqrt 3 } \right)}^2}}}{4} + \dfrac{1}{4} \\
= \dfrac{3}{4} + \dfrac{1}{4} \\
= \dfrac{{3 + 1}}{4} \\
= \dfrac{4}{4} \\
= 1 \\
$
Note – Trigonometric angles are the angles given by the ratios of the trigonometric functions. The angle value ranges from 0-360 degrees. These questions are very simple and easy to solve, however, all the basic formulas and the values of the associated angles of trigonometry must be remembered.
Complete step-by-step answer:
Here, it is given that,
$\sin 420^\circ \cos 330^\circ + \cos \left( { - 300^\circ } \right)\sin 150^\circ $ ………….. (1)
We have no values of $\sin 420^\circ ,\cos 330^\circ ,\cos \left( { - 300^\circ } \right)$ and $\sin 150^\circ $.
So, we will use some associated angles of trigonometry to find and value and get the required result.
First we will find the value of $\sin 420^\circ $, we get,
$\sin 420^\circ $
$ = \sin \left( {360^\circ + 60^\circ } \right)$
We know that $\sin \left( {360^\circ + \theta } \right) = \sin \theta $, therefore,
$
\sin 60^\circ \\
= \dfrac{{\sqrt 3 }}{2} \\
$
Now, we will find the value of $\cos 330^\circ $, we obtain,
$\cos 330^\circ $
$ = \cos \left( {360^\circ - 30^\circ } \right)$
We know that $\cos \left( {360^\circ - \theta } \right) = \cos \theta $, therefore,
$
\cos 30^\circ \\
= \dfrac{{\sqrt 3 }}{2} \\
$
Now, we will find the value of $\cos \left( { - 300^\circ } \right)$, we obtain,
$\cos \left( { - 300^\circ } \right)$
$ = \cos 300^\circ $
$ = \cos \left( {360^\circ - 60^\circ } \right)$
We know that $\cos \left( {360^\circ - \theta } \right) = \cos \theta $, therefore,
$
\cos 60^\circ \\
= \dfrac{1}{2} \\
$
Now, we will find the value of $\sin 150^\circ $, we get,
$
\sin 150^\circ \\
= \sin \left( {180^\circ - 30^\circ } \right) \\
$
We know that $\sin \left( {180^\circ - \theta } \right) = \sin \theta $, therefore.
$
\sin 30^\circ \\
= \dfrac{1}{2} \\
$
Now,
$\sin 420^\circ \cos 330^\circ + \cos \left( { - 300^\circ } \right)\sin 150^\circ $$ = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times \dfrac{1}{2}$
$
= \dfrac{{{{\left( {\sqrt 3 } \right)}^2}}}{4} + \dfrac{1}{4} \\
= \dfrac{3}{4} + \dfrac{1}{4} \\
= \dfrac{{3 + 1}}{4} \\
= \dfrac{4}{4} \\
= 1 \\
$
Note – Trigonometric angles are the angles given by the ratios of the trigonometric functions. The angle value ranges from 0-360 degrees. These questions are very simple and easy to solve, however, all the basic formulas and the values of the associated angles of trigonometry must be remembered.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

