
Simplify the following expression:
\[\left( \left( 4\times {{10}^{-2}} \right)-\left( 2.5\times {{10}^{-3}} \right) \right)\left( {{10}^{4}} \right)\]
Answer
522k+ views
Hint: Solve the whole expression according to the BODMAS rule. First, simplify both the brackets in the given expression individually and then do the remaining solution. Use \[{{a}^{-n}}=\dfrac{1}{{{a}^{n}}}\] in the first step to begin the solution.
Complete step-by-step answer:
Here we have to simplify the expression: \[\left( \left( 4\times {{10}^{-2}} \right)-\left( 2.5\times {{10}^{-3}} \right) \right)\left( {{10}^{4}} \right)\].
Before proceeding with this question, we must know what a BODMAS rule is. BODMAS is an acronym and it stands for Bracket Of Division, Multiplication, Addition, and Subtraction. It explains the order of the operations to solve an expression. The ‘of’ in the BODMAS full form is also called “Order”, which refers to the numbers which involve powers, square roots, etc. According to BODMAS rule, if an expression contains brackets ((), {}, []) we have to first solve or simplify the bracket followed by ‘of’ (powers, roots, etc.), then division, multiplication, addition and subtraction from left to right.
Let us consider the expression given in the question
\[E=\left( \left( 4\times {{10}^{-2}} \right)-\left( 2.5\times {{10}^{-3}} \right) \right).\left( {{10}^{4}} \right)\]
Let us solve each bracket individually. We know that \[{{a}^{-n}}=\dfrac{1}{{{a}^{n}}}\]. By using it in the above expression, we get,
\[E=\left( \left( \dfrac{4}{{{\left( 10 \right)}^{2}}} \right)-\left( \dfrac{2.5}{{{\left( 10 \right)}^{3}}} \right) \right).\left( {{10}^{4}} \right)\]
By further simplification of the above expression, we get,
\[E=\left( \left( \dfrac{4}{100} \right)-\left( \dfrac{2.5}{1000} \right) \right).\left( {{10}^{4}} \right)\]
\[E=\left( 0.04-0.0025 \right)\left( {{10}^{4}} \right)\]
By further simplifying the above expression, we get
\[E=\left( 0.0375 \right)\left( {{10}^{4}} \right)\]
Or, \[E=\left( 0.0375 \right)\left( 10000 \right)\]
So, we get E = 375.
Hence, the value of the expression \[\left( \left( 4\times {{10}^{-2}} \right)-\left( 2.5\times {{10}^{-3}} \right) \right)\left( {{10}^{4}} \right)\] is equal to 375.
Note: Students must note that they should always solve any equation according to the BODMAS rule. Solving the problem in the wrong order will result in the wrong answer. Also, if there is more than one bracket in any question, always first simplify the expression inside each bracket individually according to BODMAS rule and then do the remaining solution. All these points must be kept in mind to get the correct answer.
Complete step-by-step answer:
Here we have to simplify the expression: \[\left( \left( 4\times {{10}^{-2}} \right)-\left( 2.5\times {{10}^{-3}} \right) \right)\left( {{10}^{4}} \right)\].
Before proceeding with this question, we must know what a BODMAS rule is. BODMAS is an acronym and it stands for Bracket Of Division, Multiplication, Addition, and Subtraction. It explains the order of the operations to solve an expression. The ‘of’ in the BODMAS full form is also called “Order”, which refers to the numbers which involve powers, square roots, etc. According to BODMAS rule, if an expression contains brackets ((), {}, []) we have to first solve or simplify the bracket followed by ‘of’ (powers, roots, etc.), then division, multiplication, addition and subtraction from left to right.
Let us consider the expression given in the question
\[E=\left( \left( 4\times {{10}^{-2}} \right)-\left( 2.5\times {{10}^{-3}} \right) \right).\left( {{10}^{4}} \right)\]
Let us solve each bracket individually. We know that \[{{a}^{-n}}=\dfrac{1}{{{a}^{n}}}\]. By using it in the above expression, we get,
\[E=\left( \left( \dfrac{4}{{{\left( 10 \right)}^{2}}} \right)-\left( \dfrac{2.5}{{{\left( 10 \right)}^{3}}} \right) \right).\left( {{10}^{4}} \right)\]
By further simplification of the above expression, we get,
\[E=\left( \left( \dfrac{4}{100} \right)-\left( \dfrac{2.5}{1000} \right) \right).\left( {{10}^{4}} \right)\]
\[E=\left( 0.04-0.0025 \right)\left( {{10}^{4}} \right)\]
By further simplifying the above expression, we get
\[E=\left( 0.0375 \right)\left( {{10}^{4}} \right)\]
Or, \[E=\left( 0.0375 \right)\left( 10000 \right)\]
So, we get E = 375.
Hence, the value of the expression \[\left( \left( 4\times {{10}^{-2}} \right)-\left( 2.5\times {{10}^{-3}} \right) \right)\left( {{10}^{4}} \right)\] is equal to 375.
Note: Students must note that they should always solve any equation according to the BODMAS rule. Solving the problem in the wrong order will result in the wrong answer. Also, if there is more than one bracket in any question, always first simplify the expression inside each bracket individually according to BODMAS rule and then do the remaining solution. All these points must be kept in mind to get the correct answer.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
How did Douglas overcome his fear of water class 7 english CBSE

What is the square root of 04 class 7 maths CBSE

Aeroplanes fly in which of the following layers of class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

Find mean of first five natural numbers class 7 maths CBSE

You are the head boyhead girl Write a notice informing class 7 english CBSE
