
Simplify the following expression \[\dfrac{\sin \left( -\theta \right)\tan \left( 90+\theta \right)\sin \left( 180+\theta \right)\sec \left( 270+\theta \right)}{\sin \left( 360-\theta \right)\cos \left( 270-\theta \right)\text{cosec}\left( 180-\theta \right)\cot \left( 360-\theta \right)}\]
Answer
574.5k+ views
Hint: We have an expression as \[\dfrac{\sin \left( -\theta \right)\tan \left( 90+\theta \right)\sin \left( 180+\theta \right)\sec \left( 270+\theta \right)}{\sin \left( 360-\theta \right)\cos \left( 270-\theta \right)\text{cosec}\left( 180-\theta \right)\cot \left( 360-\theta \right)}\]. Firstly, simplify the compound angles by using the trigonometric identities. Then, simplify the negative of angles. We get a simple expression in terms of $\theta $ . Try to cancel out the terms and get a finite value of expression.
Complete step-by-step solution
We have been given the expression as
\[\Rightarrow \dfrac{\sin \left( -\theta \right)\tan \left( 90+\theta \right)\sin \left( 180+\theta \right)\sec \left( 270+\theta \right)}{\sin \left( 360-\theta \right)\cos \left( 270-\theta \right)\text{cosec}\left( 180-\theta \right)\cot \left( 360-\theta \right)}......(1)\]
First, we will try to convert the complex terms into simpler terms.
We know that we have certain conversions possible. So, the different conversions for compound angles are enlisted below,
\[\begin{align}
& \tan \left( 90+\theta \right)=-\cot \theta \\
& \sin \left( 180+\theta \right)=-\sin \theta \\
& \sec \left( 270+\theta \right)=\text{cosec}\theta \\
& \sin \left( 360-\theta \right)=-\sin \theta \\
& \cos \left( 270-\theta \right)=-\sin \theta \\
& \text{cosec}\left( 180-\theta \right)=\text{cosec}\theta \\
& \cot \left( 360-\theta \right)=-\cot \theta \\
\end{align}\]
Now, using the above and simplifying all the compound angles in equation (1), we get:
\[\Rightarrow \dfrac{\sin \left( -\theta \right)\times -\cot \theta \times -\sin \theta \times \text{cosec}\theta }{-\sin \theta \times -\sin \theta \times \text{cosec}\theta \times -\cot \theta }......(2)\]
Now, simplifying the sine of negative angle as negative of sine of angle in equation (2), we
get:\[\Rightarrow \dfrac{-\sin \theta \times -\cot \theta \times -\sin \theta \times \text{cosec}\theta }{-\sin \theta \times -\sin \theta \times \text{cosec}\theta \times -\cot \theta }......(3)\]
Now, cancelling out similar terms in equation (3), we get:
\[\Rightarrow \dfrac{-\sin \theta \times -\cot \theta \times -\sin \theta \times \text{cosec}\theta }{-\sin \theta \times -\sin \theta \times \text{cosec}\theta \times -\cot \theta }=1\]
Hence, we have got the value of expression \[\dfrac{\sin \left( -\theta \right)\tan \left( 90+\theta \right)\sin \left( 180+\theta \right)\sec \left( 270+\theta \right)}{\sin \left( 360-\theta \right)\cos \left( 270-\theta \right)\text{cosec}\left( 180-\theta \right)\cot \left( 360-\theta \right)}\] is 1.
Note: Keep in mind that the quadrant system for the simplification of compound angles. In the first quadrant, all the angles are positive. In the second quadrant, sine and cosecant of angles are positive. In the third quadrant, tangent and cotangent of angles are positive, and in the fourth quadrant cosine and secant of angles are positive.
Also, an odd multiple of 90 changes the angle whereas the even multiple remains the same, i.e.
$\sin \left( 90+\theta \right)=\cos \theta $ but $\sin \left( 180+\theta \right)=-\sin \theta $
Complete step-by-step solution
We have been given the expression as
\[\Rightarrow \dfrac{\sin \left( -\theta \right)\tan \left( 90+\theta \right)\sin \left( 180+\theta \right)\sec \left( 270+\theta \right)}{\sin \left( 360-\theta \right)\cos \left( 270-\theta \right)\text{cosec}\left( 180-\theta \right)\cot \left( 360-\theta \right)}......(1)\]
First, we will try to convert the complex terms into simpler terms.
We know that we have certain conversions possible. So, the different conversions for compound angles are enlisted below,
\[\begin{align}
& \tan \left( 90+\theta \right)=-\cot \theta \\
& \sin \left( 180+\theta \right)=-\sin \theta \\
& \sec \left( 270+\theta \right)=\text{cosec}\theta \\
& \sin \left( 360-\theta \right)=-\sin \theta \\
& \cos \left( 270-\theta \right)=-\sin \theta \\
& \text{cosec}\left( 180-\theta \right)=\text{cosec}\theta \\
& \cot \left( 360-\theta \right)=-\cot \theta \\
\end{align}\]
Now, using the above and simplifying all the compound angles in equation (1), we get:
\[\Rightarrow \dfrac{\sin \left( -\theta \right)\times -\cot \theta \times -\sin \theta \times \text{cosec}\theta }{-\sin \theta \times -\sin \theta \times \text{cosec}\theta \times -\cot \theta }......(2)\]
Now, simplifying the sine of negative angle as negative of sine of angle in equation (2), we
get:\[\Rightarrow \dfrac{-\sin \theta \times -\cot \theta \times -\sin \theta \times \text{cosec}\theta }{-\sin \theta \times -\sin \theta \times \text{cosec}\theta \times -\cot \theta }......(3)\]
Now, cancelling out similar terms in equation (3), we get:
\[\Rightarrow \dfrac{-\sin \theta \times -\cot \theta \times -\sin \theta \times \text{cosec}\theta }{-\sin \theta \times -\sin \theta \times \text{cosec}\theta \times -\cot \theta }=1\]
Hence, we have got the value of expression \[\dfrac{\sin \left( -\theta \right)\tan \left( 90+\theta \right)\sin \left( 180+\theta \right)\sec \left( 270+\theta \right)}{\sin \left( 360-\theta \right)\cos \left( 270-\theta \right)\text{cosec}\left( 180-\theta \right)\cot \left( 360-\theta \right)}\] is 1.
Note: Keep in mind that the quadrant system for the simplification of compound angles. In the first quadrant, all the angles are positive. In the second quadrant, sine and cosecant of angles are positive. In the third quadrant, tangent and cotangent of angles are positive, and in the fourth quadrant cosine and secant of angles are positive.
Also, an odd multiple of 90 changes the angle whereas the even multiple remains the same, i.e.
$\sin \left( 90+\theta \right)=\cos \theta $ but $\sin \left( 180+\theta \right)=-\sin \theta $
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

