
Simplify the expression ${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}$
Answer
610.2k+ views
Hint: Use the algebraic identity ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac$. Hence expand the terms ${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}$ and ${{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}$. Finally, combine the like terms and hence simplify the expression. Alternatively, use the algebraic identity $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$ and hence simplify the expression. Alternatively, write ${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}$ as ${{\left( {{x}^{2}}+\left( {{y}^{2}}-{{z}^{2}} \right) \right)}^{2}}-{{\left( {{x}^{2}}-\left( {{y}^{2}}-{{z}^{2}} \right) \right)}^{2}}$ and use the algebraic identity ${{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab$
Complete step-by-step answer:
Let $S={{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}={{S}_{1}}-{{S}_{2}}$, where ${{S}_{1}}={{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}$ and ${{S}_{2}}={{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}$
Now, we have
${{S}_{1}}={{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}$
We know that ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac$
Put $a={{x}^{2}},b={{y}^{2}}$ and $c=-{{z}^{2}}$, we get
${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}={{\left( {{x}^{2}} \right)}^{2}}+{{\left( {{y}^{2}} \right)}^{2}}+{{\left( -{{z}^{2}} \right)}^{2}}+2\left( {{x}^{2}} \right)\left( {{y}^{2}} \right)+2\left( {{y}^{2}} \right)\left( -{{z}^{2}} \right)+2\left( {{x}^{2}} \right)\left( -{{z}^{2}} \right)$
Hence, we have
${{S}_{1}}={{x}^{4}}+{{y}^{4}}+{{z}^{4}}+2{{x}^{2}}{{y}^{2}}-2{{x}^{2}}{{z}^{2}}-2{{y}^{2}}{{z}^{2}}$
Also, we have
${{S}_{2}}={{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}$
We know that ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac$
Put $a={{x}^{2}},b=-{{y}^{2}}$ and $c={{z}^{2}}$, we get
${{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}={{\left( {{x}^{2}} \right)}^{2}}+{{\left( -{{y}^{2}} \right)}^{2}}+{{\left( {{z}^{2}} \right)}^{2}}+2\left( {{x}^{2}} \right)\left( -{{y}^{2}} \right)+2\left( -{{y}^{2}} \right)\left( {{z}^{2}} \right)+2\left( {{x}^{2}} \right)\left( {{z}^{2}} \right)$
Hence, we have
${{S}_{2}}={{x}^{4}}+{{y}^{4}}+{{z}^{4}}-2{{x}^{2}}{{y}^{2}}+2{{x}^{2}}{{z}^{2}}-2{{y}^{2}}{{z}^{2}}$
Hence substituting the values of ${{S}_{1}}$ and ${{S}_{2}}$ in the equation for S, we have
$S={{S}_{1}}-{{S}_{2}}={{x}^{4}}+{{y}^{4}}+{{z}^{4}}+2{{x}^{2}}{{y}^{2}}-2{{x}^{2}}{{z}^{2}}-2{{y}^{2}}{{z}^{2}}-\left( {{x}^{4}}+{{y}^{4}}+{{z}^{4}}-2{{x}^{2}}{{y}^{2}}+2{{x}^{2}}{{z}^{2}}-2{{y}^{2}}{{z}^{2}} \right)$
Simplifying by combining like terms, we get
$S=4{{x}^{2}}{{y}^{2}}-4{{x}^{2}}{{z}^{2}}$
Hence, we have
${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}=4{{x}^{2}}{{y}^{2}}-4{{x}^{2}}{{z}^{2}}$, which is the required simplified form of the expression.
Note: [1] Alternative solution:
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Taking $a={{x}^{2}}+{{y}^{2}}-{{z}^{2}}$ and $b={{x}^{2}}-{{y}^{2}}+{{z}^{2}}$ and using the above algebraic identity, we have
${{a}^{2}}-{{b}^{2}}=\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}}+{{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}}-{{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)$
Hence on simplification, we have
${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}=\left( 2{{x}^{2}} \right)\left( 2{{y}^{2}}-2{{z}^{2}} \right)=4{{x}^{2}}{{y}^{2}}-4{{x}^{2}}{{z}^{2}}$, which is the same as obtained above.
[2] Alternative solution:
We have ${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}={{\left( {{x}^{2}}+\left( {{y}^{2}}-{{z}^{2}} \right) \right)}^{2}}-{{\left( {{x}^{2}}-\left( {{y}^{2}}-{{z}^{2}} \right) \right)}^{2}}$
We know that ${{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab$
Put $a={{x}^{2}}$ and $b={{y}^{2}}-{{z}^{2}}$ and using the above algebraic identity, we get
${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}=4\left( {{x}^{2}} \right)\left( {{y}^{2}}-{{z}^{2}} \right)$
Using distributive law of multiplication over subtraction, we get
${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}=4{{x}^{2}}{{y}^{2}}-4{{x}^{2}}{{z}^{2}}$, which is the same as obtained above.
Complete step-by-step answer:
Let $S={{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}={{S}_{1}}-{{S}_{2}}$, where ${{S}_{1}}={{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}$ and ${{S}_{2}}={{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}$
Now, we have
${{S}_{1}}={{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}$
We know that ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac$
Put $a={{x}^{2}},b={{y}^{2}}$ and $c=-{{z}^{2}}$, we get
${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}={{\left( {{x}^{2}} \right)}^{2}}+{{\left( {{y}^{2}} \right)}^{2}}+{{\left( -{{z}^{2}} \right)}^{2}}+2\left( {{x}^{2}} \right)\left( {{y}^{2}} \right)+2\left( {{y}^{2}} \right)\left( -{{z}^{2}} \right)+2\left( {{x}^{2}} \right)\left( -{{z}^{2}} \right)$
Hence, we have
${{S}_{1}}={{x}^{4}}+{{y}^{4}}+{{z}^{4}}+2{{x}^{2}}{{y}^{2}}-2{{x}^{2}}{{z}^{2}}-2{{y}^{2}}{{z}^{2}}$
Also, we have
${{S}_{2}}={{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}$
We know that ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac$
Put $a={{x}^{2}},b=-{{y}^{2}}$ and $c={{z}^{2}}$, we get
${{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}={{\left( {{x}^{2}} \right)}^{2}}+{{\left( -{{y}^{2}} \right)}^{2}}+{{\left( {{z}^{2}} \right)}^{2}}+2\left( {{x}^{2}} \right)\left( -{{y}^{2}} \right)+2\left( -{{y}^{2}} \right)\left( {{z}^{2}} \right)+2\left( {{x}^{2}} \right)\left( {{z}^{2}} \right)$
Hence, we have
${{S}_{2}}={{x}^{4}}+{{y}^{4}}+{{z}^{4}}-2{{x}^{2}}{{y}^{2}}+2{{x}^{2}}{{z}^{2}}-2{{y}^{2}}{{z}^{2}}$
Hence substituting the values of ${{S}_{1}}$ and ${{S}_{2}}$ in the equation for S, we have
$S={{S}_{1}}-{{S}_{2}}={{x}^{4}}+{{y}^{4}}+{{z}^{4}}+2{{x}^{2}}{{y}^{2}}-2{{x}^{2}}{{z}^{2}}-2{{y}^{2}}{{z}^{2}}-\left( {{x}^{4}}+{{y}^{4}}+{{z}^{4}}-2{{x}^{2}}{{y}^{2}}+2{{x}^{2}}{{z}^{2}}-2{{y}^{2}}{{z}^{2}} \right)$
Simplifying by combining like terms, we get
$S=4{{x}^{2}}{{y}^{2}}-4{{x}^{2}}{{z}^{2}}$
Hence, we have
${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}=4{{x}^{2}}{{y}^{2}}-4{{x}^{2}}{{z}^{2}}$, which is the required simplified form of the expression.
Note: [1] Alternative solution:
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Taking $a={{x}^{2}}+{{y}^{2}}-{{z}^{2}}$ and $b={{x}^{2}}-{{y}^{2}}+{{z}^{2}}$ and using the above algebraic identity, we have
${{a}^{2}}-{{b}^{2}}=\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}}+{{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}}-{{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)$
Hence on simplification, we have
${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}=\left( 2{{x}^{2}} \right)\left( 2{{y}^{2}}-2{{z}^{2}} \right)=4{{x}^{2}}{{y}^{2}}-4{{x}^{2}}{{z}^{2}}$, which is the same as obtained above.
[2] Alternative solution:
We have ${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}={{\left( {{x}^{2}}+\left( {{y}^{2}}-{{z}^{2}} \right) \right)}^{2}}-{{\left( {{x}^{2}}-\left( {{y}^{2}}-{{z}^{2}} \right) \right)}^{2}}$
We know that ${{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab$
Put $a={{x}^{2}}$ and $b={{y}^{2}}-{{z}^{2}}$ and using the above algebraic identity, we get
${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}=4\left( {{x}^{2}} \right)\left( {{y}^{2}}-{{z}^{2}} \right)$
Using distributive law of multiplication over subtraction, we get
${{\left( {{x}^{2}}+{{y}^{2}}-{{z}^{2}} \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+{{z}^{2}} \right)}^{2}}=4{{x}^{2}}{{y}^{2}}-4{{x}^{2}}{{z}^{2}}$, which is the same as obtained above.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

