
Simplify $ {{\log }_{7}}{{\log }_{7}}\sqrt{7\sqrt{7\sqrt{7}}} $ \[\]
A. $ 3{{\log }_{2}}7 $ \[\]
B. $ 1-3{{\log }_{3}}7 $ \[\]
C. $ 1-3{{\log }_{7}}2 $ \[\]
D. None of these \[\]
Answer
579.3k+ views
Hint: We start by simplifying the innermost square root in the given expression using the exponential identities like $ {{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} $ and $ {{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} $ until the all three square roots vanish. We simplify the logarithm using identities of power $ m{{\log }_{b}}x={{\log }_{b}}{{x}^{m}} $ and quotient $ {{\log }_{b}}\left( \dfrac{m}{n} \right)={{\log }_{b}}m-{{\log }_{b}}n $ .
Complete step-by-step answer:
We know that the logarithm is the inverse operation to exponentiation. That means the logarithm of a given number $ x $ is the exponent to which another fixed number, the base $ b $ must be raised, to produce that number $ x $ , which means if $ {{b}^{y}}=x $ then the logarithm denoted as log and calculated as
\[{{\log }_{b}}x=y\]
Here $ x,y,b $ are real numbers subjected to condition $ x > 0 $ and $ b > 0,b\ne 1 $
We know that
\[{{\log }_{b}}b=1\]
We know the logarithmic identity involving power $ m\ne 0 $ where $ m $ is real number as
\[m{{\log }_{b}}x={{\log }_{b}}{{x}^{m}}\]
We also know the logarithmic identity involving quotient as
\[{{\log }_{b}}\left( \dfrac{m}{n} \right)={{\log }_{b}}m-{{\log }_{b}}n\]
We are given in the question the numerical expression involving logarithm as
\[{{\log }_{7}}{{\log }_{7}}\sqrt{7\sqrt{7\sqrt{7}}}\]
We begin with simplifying the innermost square root. We know that $ \sqrt{a}={{\left( a \right)}^{\dfrac{1}{2}}} $ for any real number $ a\ne 0 $ . So we have,
\[{{\log }_{7}}{{\log }_{7}}\sqrt{7\sqrt{7\sqrt{7}}}={{\log }_{7}}{{\log }_{7}}\sqrt{7\sqrt{7\times {{7}^{\dfrac{1}{2}}}}}\]
We use the exponential identity $ {{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} $ where $ n $ is real number in above step for $ a=7,m=1,n=\dfrac{1}{2} $ to have,
\[\begin{align}
& ={{\log }_{7}}{{\log }_{7}}\sqrt{7\sqrt{{{7}^{1+\dfrac{1}{2}}}}} \\
& ={{\log }_{7}}{{\log }_{7}}\sqrt{7\sqrt{{{7}^{\dfrac{3}{2}}}}} \\
& ={{\log }_{7}}{{\log }_{7}}\sqrt{7{{\left( {{7}^{\dfrac{3}{2}}} \right)}^{\dfrac{1}{2}}}} \\
\end{align}\]
We use the exponential identity $ {{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} $ where $ {{a}^{m}} $ is a nonzero real number in above step for $ a=7,m=\dfrac{3}{2},n=\dfrac{1}{2} $ to have,
\[\begin{align}
& ={{\log }_{7}}{{\log }_{7}}\sqrt{7\times {{7}^{\dfrac{3}{2}\times \dfrac{1}{2}}}} \\
& ={{\log }_{7}}{{\log }_{7}}\sqrt{7\times {{7}^{\dfrac{3}{4}}}} \\
\end{align}\]
We use the exponential identity $ {{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} $ for $ a=7,m=1,n=\dfrac{3}{4} $ in above step to have,
\[\begin{align}
& ={{\log }_{{}}}{{\log }_{7}}\sqrt{{{7}^{1+\dfrac{3}{4}}}} \\
& ={{\log }_{7}}{{\log }_{7}}\sqrt{{{7}^{\dfrac{7}{4}}}} \\
& ={{\log }_{7}}{{\log }_{7}}{{\left( {{7}^{\dfrac{7}{4}}} \right)}^{\dfrac{1}{2}}} \\
\end{align}\]
We use the exponential identity $ {{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} $ for $ a=7,m=\dfrac{7}{4},n=\dfrac{1}{2} $ in above step to have,
\[\begin{align}
& ={{\log }_{7}}{{\log }_{7}}{{7}^{\dfrac{7}{4}\times \dfrac{1}{2}}} \\
& ={{\log }_{7}}{{\log }_{7}}{{7}^{\dfrac{7}{8}}} \\
\end{align}\]
We use the logarithmic identity of quotient $ m{{\log }_{b}}x={{\log }_{b}}{{x}^{m}} $ for $ b=x=7,m=\dfrac{7}{8} $ in above step to have,
\[={{\log }_{7}}\dfrac{7}{8}{{\log }_{7}}7\]
We use the logarithmic identity $ {{\log }_{b}}b=1 $ for $ b=7 $ in above step to have,
\[={{\log }_{7}}\dfrac{7}{8}\]
We use the logarithmic identity of quotient $ {{\log }_{b}}\left( \dfrac{m}{n} \right)={{\log }_{b}}m-{{\log }_{b}}n $ for $ b=7,m=7,n=8 $ in above step to have,
\[\begin{align}
& ={{\log }_{7}}7-{{\log }_{7}}8 \\
& =1-{{\log }_{7}}8 \\
\end{align}\]
We find the find the prime factorization of 8 and replace 8 as $ 8=2\times 2\times 2={{2}^{3}} $ in above step to have,
\[=1-{{\log }_{7}}{{2}^{3}}\]
We use the logarithmic identity of quotient $ m{{\log }_{b}}x={{\log }_{b}}{{x}^{m}} $ for $ b=7,x=2,m=3 $ in above step to have,
\[=1-3{{\log }_{7}}2\]
So, the correct answer is “Option C”.
Note: The logarithmic identity of product is given by $ {{\log }_{b}}\left( mn \right)={{\log }_{b}}m+{{\log }_{b}}n $ . The logarithm is called binary logarithm when the base is 2 and denoted as $ \operatorname{lb}x $ , natural logarithm when the base is transcendental $ e $ and denoted as $ \ln x $ and common logarithm when the base is 10 and denoted as $ \lg x. $
Complete step-by-step answer:
We know that the logarithm is the inverse operation to exponentiation. That means the logarithm of a given number $ x $ is the exponent to which another fixed number, the base $ b $ must be raised, to produce that number $ x $ , which means if $ {{b}^{y}}=x $ then the logarithm denoted as log and calculated as
\[{{\log }_{b}}x=y\]
Here $ x,y,b $ are real numbers subjected to condition $ x > 0 $ and $ b > 0,b\ne 1 $
We know that
\[{{\log }_{b}}b=1\]
We know the logarithmic identity involving power $ m\ne 0 $ where $ m $ is real number as
\[m{{\log }_{b}}x={{\log }_{b}}{{x}^{m}}\]
We also know the logarithmic identity involving quotient as
\[{{\log }_{b}}\left( \dfrac{m}{n} \right)={{\log }_{b}}m-{{\log }_{b}}n\]
We are given in the question the numerical expression involving logarithm as
\[{{\log }_{7}}{{\log }_{7}}\sqrt{7\sqrt{7\sqrt{7}}}\]
We begin with simplifying the innermost square root. We know that $ \sqrt{a}={{\left( a \right)}^{\dfrac{1}{2}}} $ for any real number $ a\ne 0 $ . So we have,
\[{{\log }_{7}}{{\log }_{7}}\sqrt{7\sqrt{7\sqrt{7}}}={{\log }_{7}}{{\log }_{7}}\sqrt{7\sqrt{7\times {{7}^{\dfrac{1}{2}}}}}\]
We use the exponential identity $ {{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} $ where $ n $ is real number in above step for $ a=7,m=1,n=\dfrac{1}{2} $ to have,
\[\begin{align}
& ={{\log }_{7}}{{\log }_{7}}\sqrt{7\sqrt{{{7}^{1+\dfrac{1}{2}}}}} \\
& ={{\log }_{7}}{{\log }_{7}}\sqrt{7\sqrt{{{7}^{\dfrac{3}{2}}}}} \\
& ={{\log }_{7}}{{\log }_{7}}\sqrt{7{{\left( {{7}^{\dfrac{3}{2}}} \right)}^{\dfrac{1}{2}}}} \\
\end{align}\]
We use the exponential identity $ {{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} $ where $ {{a}^{m}} $ is a nonzero real number in above step for $ a=7,m=\dfrac{3}{2},n=\dfrac{1}{2} $ to have,
\[\begin{align}
& ={{\log }_{7}}{{\log }_{7}}\sqrt{7\times {{7}^{\dfrac{3}{2}\times \dfrac{1}{2}}}} \\
& ={{\log }_{7}}{{\log }_{7}}\sqrt{7\times {{7}^{\dfrac{3}{4}}}} \\
\end{align}\]
We use the exponential identity $ {{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} $ for $ a=7,m=1,n=\dfrac{3}{4} $ in above step to have,
\[\begin{align}
& ={{\log }_{{}}}{{\log }_{7}}\sqrt{{{7}^{1+\dfrac{3}{4}}}} \\
& ={{\log }_{7}}{{\log }_{7}}\sqrt{{{7}^{\dfrac{7}{4}}}} \\
& ={{\log }_{7}}{{\log }_{7}}{{\left( {{7}^{\dfrac{7}{4}}} \right)}^{\dfrac{1}{2}}} \\
\end{align}\]
We use the exponential identity $ {{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} $ for $ a=7,m=\dfrac{7}{4},n=\dfrac{1}{2} $ in above step to have,
\[\begin{align}
& ={{\log }_{7}}{{\log }_{7}}{{7}^{\dfrac{7}{4}\times \dfrac{1}{2}}} \\
& ={{\log }_{7}}{{\log }_{7}}{{7}^{\dfrac{7}{8}}} \\
\end{align}\]
We use the logarithmic identity of quotient $ m{{\log }_{b}}x={{\log }_{b}}{{x}^{m}} $ for $ b=x=7,m=\dfrac{7}{8} $ in above step to have,
\[={{\log }_{7}}\dfrac{7}{8}{{\log }_{7}}7\]
We use the logarithmic identity $ {{\log }_{b}}b=1 $ for $ b=7 $ in above step to have,
\[={{\log }_{7}}\dfrac{7}{8}\]
We use the logarithmic identity of quotient $ {{\log }_{b}}\left( \dfrac{m}{n} \right)={{\log }_{b}}m-{{\log }_{b}}n $ for $ b=7,m=7,n=8 $ in above step to have,
\[\begin{align}
& ={{\log }_{7}}7-{{\log }_{7}}8 \\
& =1-{{\log }_{7}}8 \\
\end{align}\]
We find the find the prime factorization of 8 and replace 8 as $ 8=2\times 2\times 2={{2}^{3}} $ in above step to have,
\[=1-{{\log }_{7}}{{2}^{3}}\]
We use the logarithmic identity of quotient $ m{{\log }_{b}}x={{\log }_{b}}{{x}^{m}} $ for $ b=7,x=2,m=3 $ in above step to have,
\[=1-3{{\log }_{7}}2\]
So, the correct answer is “Option C”.
Note: The logarithmic identity of product is given by $ {{\log }_{b}}\left( mn \right)={{\log }_{b}}m+{{\log }_{b}}n $ . The logarithm is called binary logarithm when the base is 2 and denoted as $ \operatorname{lb}x $ , natural logarithm when the base is transcendental $ e $ and denoted as $ \ln x $ and common logarithm when the base is 10 and denoted as $ \lg x. $
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

