
Simplify: $\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$.
Answer
540k+ views
Hint: the simplification of the given surds $\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ will be done in the form of addition form of taking LCM of the denominators. We apply the theorems of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ and ${{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}=2\left( {{a}^{2}}+{{b}^{2}} \right)$to simplify the solution.
Complete step by step answer:
The given rationalisation will be solved using the LCM of the denominators.
The denominators are $\sqrt{3}-\sqrt{2}$ and $\sqrt{3}+\sqrt{2}$. We have to take their multiplication which is $\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)$.
Therefore, the simplified form is
$\begin{align}
& \dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} \\
& =\dfrac{\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)+\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)}{\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)} \\
& =\dfrac{{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}+{{\left( \sqrt{3}-\sqrt{2} \right)}^{2}}}{\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)} \\
\end{align}$
Now we have the identity theorem of $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ which we apply for $a=\sqrt{3};b=\sqrt{2}$.
This gives $\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)={{\left( \sqrt{3} \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}=3-2=1$.
We also apply the theorem of ${{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}=2\left( {{a}^{2}}+{{b}^{2}} \right)$ for $a=\sqrt{3};b=\sqrt{2}$ in the numerator and get ${{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}+{{\left( \sqrt{3}-\sqrt{2} \right)}^{2}}=2\left( 3+2 \right)=10$.
Now we complete the simplification by putting the values and get
$\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=\dfrac{{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}+{{\left( \sqrt{3}-\sqrt{2} \right)}^{2}}}{\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)}=\dfrac{10}{1}=10$.
The simplified value of $\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ is 10.
Note: We can also use rationalisation for individual terms.
For $\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, we can multiply both denominator and numerator with $\sqrt{3}+\sqrt{2}$. We get
$\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times \dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}=\dfrac{{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}}{\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)}=5+2\sqrt{6}$
Doing similar thing for $\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$, we get $\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=5-2\sqrt{6}$.
The addition gives a solution of 10.
Complete step by step answer:
The given rationalisation will be solved using the LCM of the denominators.
The denominators are $\sqrt{3}-\sqrt{2}$ and $\sqrt{3}+\sqrt{2}$. We have to take their multiplication which is $\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)$.
Therefore, the simplified form is
$\begin{align}
& \dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} \\
& =\dfrac{\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)+\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)}{\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)} \\
& =\dfrac{{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}+{{\left( \sqrt{3}-\sqrt{2} \right)}^{2}}}{\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)} \\
\end{align}$
Now we have the identity theorem of $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ which we apply for $a=\sqrt{3};b=\sqrt{2}$.
This gives $\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)={{\left( \sqrt{3} \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}=3-2=1$.
We also apply the theorem of ${{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}=2\left( {{a}^{2}}+{{b}^{2}} \right)$ for $a=\sqrt{3};b=\sqrt{2}$ in the numerator and get ${{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}+{{\left( \sqrt{3}-\sqrt{2} \right)}^{2}}=2\left( 3+2 \right)=10$.
Now we complete the simplification by putting the values and get
$\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=\dfrac{{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}+{{\left( \sqrt{3}-\sqrt{2} \right)}^{2}}}{\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)}=\dfrac{10}{1}=10$.
The simplified value of $\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ is 10.
Note: We can also use rationalisation for individual terms.
For $\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, we can multiply both denominator and numerator with $\sqrt{3}+\sqrt{2}$. We get
$\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times \dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}=\dfrac{{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}}{\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)}=5+2\sqrt{6}$
Doing similar thing for $\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$, we get $\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=5-2\sqrt{6}$.
The addition gives a solution of 10.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

