
Show that the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$, where, $n \in N$.
Answer
510.6k+ views
Hint- Combinations are a way to calculate the total outcomes of an event where the order of the outcomes does not matter. To calculate combinations, we will use the formula $n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$.
In this question, we need to show the middle term in the expansion of the function \[{\left( {1 + x} \right)^{2n}}\;\]is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$ for which we need to carry out the formula for the binomial expansion involving the combinations as well.
Complete step by step solution:
Consider the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] be \[{t_{n{\text{ }} + {\text{ }}1}}\]
\[
{t_{n{\text{ }} + {\text{ }}1}} = {}^{2n}{C_n} \times {1^{\left( {2n - n} \right)}} \times {x^n} \\
= \dfrac{{(2n)!}}{{n!\left( {2n - n} \right)!}} \times {x^n} \\
\]
Here, we can expand the terms inside the factorials as:
\[{t_{n + 1}} = \dfrac{{2n\left( {{\text{ }}2n{\text{ }}-{\text{ }}1} \right)\left( {{\text{ }}2n{\text{ }}-{\text{ }}2} \right) \ldots \ldots \ldots 4 \times 3 \times 2 \times 1}}{{n!\left( n \right)!}} \times \;{x^n}\]
Now, the numerator can be seen as the product of the even terms and the odd terms so, segregate the even and odd terms as:
\[
{t_{n + 1}} = \dfrac{{{2^n}\left[ {n\left( {n - 1} \right)\left( {n - 2} \right) \ldots ..{\text{ }} \times 2 \times 1} \right]\left[ {\left( {2n - 3} \right) \ldots \ldots 3 \times 1} \right]}}{{(n!)(n!)}} \times {\text{ }}{x^n} \\
= \dfrac{{\left( {2n - 1} \right)\left( {2n - 3} \right) \ldots ..{\text{ }}3 \times 1}}{{n!}} \times {2^n} \times {x^n} \\
= \dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}} \\
\]
Hence, the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$.
Note:Students must be aware while taking the common terms out of the functions. Alternatively, a short method to find the value of ${}^n{C_r}$ is $n{C_r} = \dfrac{{n(n - 1)(n - 2).......(n - r + 1)}}{{r!}}$.
The above trick can be easily proved by doing simple calculations in the original equation.
In this question, we need to show the middle term in the expansion of the function \[{\left( {1 + x} \right)^{2n}}\;\]is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$ for which we need to carry out the formula for the binomial expansion involving the combinations as well.
Complete step by step solution:
Consider the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] be \[{t_{n{\text{ }} + {\text{ }}1}}\]
\[
{t_{n{\text{ }} + {\text{ }}1}} = {}^{2n}{C_n} \times {1^{\left( {2n - n} \right)}} \times {x^n} \\
= \dfrac{{(2n)!}}{{n!\left( {2n - n} \right)!}} \times {x^n} \\
\]
Here, we can expand the terms inside the factorials as:
\[{t_{n + 1}} = \dfrac{{2n\left( {{\text{ }}2n{\text{ }}-{\text{ }}1} \right)\left( {{\text{ }}2n{\text{ }}-{\text{ }}2} \right) \ldots \ldots \ldots 4 \times 3 \times 2 \times 1}}{{n!\left( n \right)!}} \times \;{x^n}\]
Now, the numerator can be seen as the product of the even terms and the odd terms so, segregate the even and odd terms as:
\[
{t_{n + 1}} = \dfrac{{{2^n}\left[ {n\left( {n - 1} \right)\left( {n - 2} \right) \ldots ..{\text{ }} \times 2 \times 1} \right]\left[ {\left( {2n - 3} \right) \ldots \ldots 3 \times 1} \right]}}{{(n!)(n!)}} \times {\text{ }}{x^n} \\
= \dfrac{{\left( {2n - 1} \right)\left( {2n - 3} \right) \ldots ..{\text{ }}3 \times 1}}{{n!}} \times {2^n} \times {x^n} \\
= \dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}} \\
\]
Hence, the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$.
Note:Students must be aware while taking the common terms out of the functions. Alternatively, a short method to find the value of ${}^n{C_r}$ is $n{C_r} = \dfrac{{n(n - 1)(n - 2).......(n - r + 1)}}{{r!}}$.
The above trick can be easily proved by doing simple calculations in the original equation.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
