
Show that the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$, where, $n \in N$.
Answer
577.2k+ views
Hint- Combinations are a way to calculate the total outcomes of an event where the order of the outcomes does not matter. To calculate combinations, we will use the formula $n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$.
In this question, we need to show the middle term in the expansion of the function \[{\left( {1 + x} \right)^{2n}}\;\]is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$ for which we need to carry out the formula for the binomial expansion involving the combinations as well.
Complete step by step solution:
Consider the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] be \[{t_{n{\text{ }} + {\text{ }}1}}\]
\[
{t_{n{\text{ }} + {\text{ }}1}} = {}^{2n}{C_n} \times {1^{\left( {2n - n} \right)}} \times {x^n} \\
= \dfrac{{(2n)!}}{{n!\left( {2n - n} \right)!}} \times {x^n} \\
\]
Here, we can expand the terms inside the factorials as:
\[{t_{n + 1}} = \dfrac{{2n\left( {{\text{ }}2n{\text{ }}-{\text{ }}1} \right)\left( {{\text{ }}2n{\text{ }}-{\text{ }}2} \right) \ldots \ldots \ldots 4 \times 3 \times 2 \times 1}}{{n!\left( n \right)!}} \times \;{x^n}\]
Now, the numerator can be seen as the product of the even terms and the odd terms so, segregate the even and odd terms as:
\[
{t_{n + 1}} = \dfrac{{{2^n}\left[ {n\left( {n - 1} \right)\left( {n - 2} \right) \ldots ..{\text{ }} \times 2 \times 1} \right]\left[ {\left( {2n - 3} \right) \ldots \ldots 3 \times 1} \right]}}{{(n!)(n!)}} \times {\text{ }}{x^n} \\
= \dfrac{{\left( {2n - 1} \right)\left( {2n - 3} \right) \ldots ..{\text{ }}3 \times 1}}{{n!}} \times {2^n} \times {x^n} \\
= \dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}} \\
\]
Hence, the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$.
Note:Students must be aware while taking the common terms out of the functions. Alternatively, a short method to find the value of ${}^n{C_r}$ is $n{C_r} = \dfrac{{n(n - 1)(n - 2).......(n - r + 1)}}{{r!}}$.
The above trick can be easily proved by doing simple calculations in the original equation.
In this question, we need to show the middle term in the expansion of the function \[{\left( {1 + x} \right)^{2n}}\;\]is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$ for which we need to carry out the formula for the binomial expansion involving the combinations as well.
Complete step by step solution:
Consider the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] be \[{t_{n{\text{ }} + {\text{ }}1}}\]
\[
{t_{n{\text{ }} + {\text{ }}1}} = {}^{2n}{C_n} \times {1^{\left( {2n - n} \right)}} \times {x^n} \\
= \dfrac{{(2n)!}}{{n!\left( {2n - n} \right)!}} \times {x^n} \\
\]
Here, we can expand the terms inside the factorials as:
\[{t_{n + 1}} = \dfrac{{2n\left( {{\text{ }}2n{\text{ }}-{\text{ }}1} \right)\left( {{\text{ }}2n{\text{ }}-{\text{ }}2} \right) \ldots \ldots \ldots 4 \times 3 \times 2 \times 1}}{{n!\left( n \right)!}} \times \;{x^n}\]
Now, the numerator can be seen as the product of the even terms and the odd terms so, segregate the even and odd terms as:
\[
{t_{n + 1}} = \dfrac{{{2^n}\left[ {n\left( {n - 1} \right)\left( {n - 2} \right) \ldots ..{\text{ }} \times 2 \times 1} \right]\left[ {\left( {2n - 3} \right) \ldots \ldots 3 \times 1} \right]}}{{(n!)(n!)}} \times {\text{ }}{x^n} \\
= \dfrac{{\left( {2n - 1} \right)\left( {2n - 3} \right) \ldots ..{\text{ }}3 \times 1}}{{n!}} \times {2^n} \times {x^n} \\
= \dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}} \\
\]
Hence, the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$.
Note:Students must be aware while taking the common terms out of the functions. Alternatively, a short method to find the value of ${}^n{C_r}$ is $n{C_r} = \dfrac{{n(n - 1)(n - 2).......(n - r + 1)}}{{r!}}$.
The above trick can be easily proved by doing simple calculations in the original equation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

