
Show that the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$, where, $n \in N$.
Answer
591.9k+ views
Hint- Combinations are a way to calculate the total outcomes of an event where the order of the outcomes does not matter. To calculate combinations, we will use the formula $n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$.
In this question, we need to show the middle term in the expansion of the function \[{\left( {1 + x} \right)^{2n}}\;\]is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$ for which we need to carry out the formula for the binomial expansion involving the combinations as well.
Complete step by step solution:
Consider the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] be \[{t_{n{\text{ }} + {\text{ }}1}}\]
\[
{t_{n{\text{ }} + {\text{ }}1}} = {}^{2n}{C_n} \times {1^{\left( {2n - n} \right)}} \times {x^n} \\
= \dfrac{{(2n)!}}{{n!\left( {2n - n} \right)!}} \times {x^n} \\
\]
Here, we can expand the terms inside the factorials as:
\[{t_{n + 1}} = \dfrac{{2n\left( {{\text{ }}2n{\text{ }}-{\text{ }}1} \right)\left( {{\text{ }}2n{\text{ }}-{\text{ }}2} \right) \ldots \ldots \ldots 4 \times 3 \times 2 \times 1}}{{n!\left( n \right)!}} \times \;{x^n}\]
Now, the numerator can be seen as the product of the even terms and the odd terms so, segregate the even and odd terms as:
\[
{t_{n + 1}} = \dfrac{{{2^n}\left[ {n\left( {n - 1} \right)\left( {n - 2} \right) \ldots ..{\text{ }} \times 2 \times 1} \right]\left[ {\left( {2n - 3} \right) \ldots \ldots 3 \times 1} \right]}}{{(n!)(n!)}} \times {\text{ }}{x^n} \\
= \dfrac{{\left( {2n - 1} \right)\left( {2n - 3} \right) \ldots ..{\text{ }}3 \times 1}}{{n!}} \times {2^n} \times {x^n} \\
= \dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}} \\
\]
Hence, the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$.
Note:Students must be aware while taking the common terms out of the functions. Alternatively, a short method to find the value of ${}^n{C_r}$ is $n{C_r} = \dfrac{{n(n - 1)(n - 2).......(n - r + 1)}}{{r!}}$.
The above trick can be easily proved by doing simple calculations in the original equation.
In this question, we need to show the middle term in the expansion of the function \[{\left( {1 + x} \right)^{2n}}\;\]is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$ for which we need to carry out the formula for the binomial expansion involving the combinations as well.
Complete step by step solution:
Consider the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] be \[{t_{n{\text{ }} + {\text{ }}1}}\]
\[
{t_{n{\text{ }} + {\text{ }}1}} = {}^{2n}{C_n} \times {1^{\left( {2n - n} \right)}} \times {x^n} \\
= \dfrac{{(2n)!}}{{n!\left( {2n - n} \right)!}} \times {x^n} \\
\]
Here, we can expand the terms inside the factorials as:
\[{t_{n + 1}} = \dfrac{{2n\left( {{\text{ }}2n{\text{ }}-{\text{ }}1} \right)\left( {{\text{ }}2n{\text{ }}-{\text{ }}2} \right) \ldots \ldots \ldots 4 \times 3 \times 2 \times 1}}{{n!\left( n \right)!}} \times \;{x^n}\]
Now, the numerator can be seen as the product of the even terms and the odd terms so, segregate the even and odd terms as:
\[
{t_{n + 1}} = \dfrac{{{2^n}\left[ {n\left( {n - 1} \right)\left( {n - 2} \right) \ldots ..{\text{ }} \times 2 \times 1} \right]\left[ {\left( {2n - 3} \right) \ldots \ldots 3 \times 1} \right]}}{{(n!)(n!)}} \times {\text{ }}{x^n} \\
= \dfrac{{\left( {2n - 1} \right)\left( {2n - 3} \right) \ldots ..{\text{ }}3 \times 1}}{{n!}} \times {2^n} \times {x^n} \\
= \dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}} \\
\]
Hence, the middle term in the expansion of \[{\left( {1 + x} \right)^{2n}}\;\] is $\dfrac{{1.3.5{\text{ }} \ldots \left( {2n{\text{ }}-{\text{ }}1} \right) \times {2^n} \times {x^n}}}{{n!}}$.
Note:Students must be aware while taking the common terms out of the functions. Alternatively, a short method to find the value of ${}^n{C_r}$ is $n{C_r} = \dfrac{{n(n - 1)(n - 2).......(n - r + 1)}}{{r!}}$.
The above trick can be easily proved by doing simple calculations in the original equation.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

