
Show that the given equation is true.
$\left( a+\omega b+{{\omega }^{2}}c \right)\left( a+{{\omega }^{2}}b+\omega c \right)={{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab$
Answer
615.9k+ views
Hint:Firstly assume the LHS and simplify it by multiplying the brackets. After simplification arrange the similar terms to take out some common terms from them. Then use the properties \[{{\omega }^{3}}=1\] and \[\omega +{{\omega }^{2}}=-1\] to get the right hand side.
Complete step-by-step answer:
To prove the given equation is true we will write it down first,
$\left( a+\omega b+{{\omega }^{2}}c \right)\left( a+{{\omega }^{2}}b+\omega c \right)={{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab$
Now, we will first solve the left hand side of the equation and then therefore assume,
Left Hand Side (LHS) = $\left( a+\omega b+{{\omega }^{2}}c \right)\left( a+{{\omega }^{2}}b+\omega c \right)$ …………………………………. (1)
Right Hand Side (RHS) = \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab\] ……………………………………… (2)
Above equation can be simplified as,
Therefore, Left Hand Side (LHS) = $a\left( a+{{\omega }^{2}}b+\omega c \right)+\omega b\left( a+{{\omega }^{2}}b+\omega c \right)+{{\omega }^{2}}c\left( a+{{\omega }^{2}}b+\omega c \right)$
If we multiply inside the brackets in the above equation we will get,
Therefore, Left Hand Side (LHS) = $\left( {{a}^{2}}+{{\omega }^{2}}ab+\omega ac \right)+\left( \omega ab+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{2}}bc \right)+\left( {{\omega }^{2}}ac+{{\omega }^{4}}bc+{{\omega }^{3}}{{c}^{2}} \right)$
If we open the brackets of the above equation we will get,
Therefore, Left Hand Side (LHS) = ${{a}^{2}}+{{\omega }^{2}}ab+\omega ac+\omega ab+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{2}}bc+{{\omega }^{2}}ac+{{\omega }^{4}}bc+{{\omega }^{3}}{{c}^{2}}$
By rearranging the above equation we will get,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{3}}{{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+{{\omega }^{4}}bc+{{\omega }^{2}}ac+\omega ac\]
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{3}}{{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+{{\omega }^{3+1}}bc+{{\omega }^{2}}ac+\omega ac\]
As we know that we can write \[{{a}^{m+n}}\] as \[{{a}^{m}}{{a}^{n}}\] therefore in the above equation we can replace \[{{\omega }^{3+1}}\] by \[{{\omega }^{3}}\omega \] therefore we will get,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{3}}{{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+{{\omega }^{3}}\omega bc+{{\omega }^{2}}ac+\omega ac\]
As we know that in the given equation \[1,\omega ,{{\omega }^{2}}\] are the cube roots of unity and to proceed further in the solution we should know the property of cube roots of unity given below,
Property:
\[{{\omega }^{3}}=1\]
If we use the above property in LHS we will get,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+1\times {{b}^{2}}+1\times {{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+1\times \omega bc+{{\omega }^{2}}ac+\omega ac\]
Further simplification in the above equation will give,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+\omega bc+{{\omega }^{2}}ac+\omega ac\]
If we take ‘ab’ common from the above equation we will get,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+\left( {{\omega }^{2}}+\omega \right)ab+{{\omega }^{2}}bc+\omega bc+{{\omega }^{2}}ac+\omega ac\]
Similarly if we take ‘bc’ and ‘ac’ common from the above equation we will get,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+\left( {{\omega }^{2}}+\omega \right)ab+\left( {{\omega }^{2}}+\omega \right)bc+\left( {{\omega }^{2}}+\omega \right)ac\]
Now before we proceed further in the solution we should know the another important property of the cube roots of unity which is given below,
Property:
\[1+\omega +{{\omega }^{2}}=0\]
If we shift 1 on the right side of the equation we will get,
\[\omega +{{\omega }^{2}}=-1\]
If we use the above value in LHS we will get,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+\left( -1 \right)ab+\left( -1 \right)bc+\left( -1 \right)ac\]
Further simplification in the above equation will give,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab\]
If we compare the above equation with equation (2) we will get,
Left Hand Side (LHS) = Right Hand Side (RHS)
Therefore,
\[\left( a+\omega b+{{\omega }^{2}}c \right)\left( a+{{\omega }^{2}}b+\omega c \right)={{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab\]
Hence proved.
Therefore the given equation is true.
Note: Many students directly use the property \[1+\omega +{{\omega }^{2}}=0\] in the given equation without simplifying it and therefore face many difficulties in doing calculations. Do remember to simplify the equation so that you can use the simple value -1 of the property without any \[\omega \] to minimize your calculations.
Complete step-by-step answer:
To prove the given equation is true we will write it down first,
$\left( a+\omega b+{{\omega }^{2}}c \right)\left( a+{{\omega }^{2}}b+\omega c \right)={{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab$
Now, we will first solve the left hand side of the equation and then therefore assume,
Left Hand Side (LHS) = $\left( a+\omega b+{{\omega }^{2}}c \right)\left( a+{{\omega }^{2}}b+\omega c \right)$ …………………………………. (1)
Right Hand Side (RHS) = \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab\] ……………………………………… (2)
Above equation can be simplified as,
Therefore, Left Hand Side (LHS) = $a\left( a+{{\omega }^{2}}b+\omega c \right)+\omega b\left( a+{{\omega }^{2}}b+\omega c \right)+{{\omega }^{2}}c\left( a+{{\omega }^{2}}b+\omega c \right)$
If we multiply inside the brackets in the above equation we will get,
Therefore, Left Hand Side (LHS) = $\left( {{a}^{2}}+{{\omega }^{2}}ab+\omega ac \right)+\left( \omega ab+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{2}}bc \right)+\left( {{\omega }^{2}}ac+{{\omega }^{4}}bc+{{\omega }^{3}}{{c}^{2}} \right)$
If we open the brackets of the above equation we will get,
Therefore, Left Hand Side (LHS) = ${{a}^{2}}+{{\omega }^{2}}ab+\omega ac+\omega ab+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{2}}bc+{{\omega }^{2}}ac+{{\omega }^{4}}bc+{{\omega }^{3}}{{c}^{2}}$
By rearranging the above equation we will get,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{3}}{{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+{{\omega }^{4}}bc+{{\omega }^{2}}ac+\omega ac\]
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{3}}{{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+{{\omega }^{3+1}}bc+{{\omega }^{2}}ac+\omega ac\]
As we know that we can write \[{{a}^{m+n}}\] as \[{{a}^{m}}{{a}^{n}}\] therefore in the above equation we can replace \[{{\omega }^{3+1}}\] by \[{{\omega }^{3}}\omega \] therefore we will get,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{\omega }^{3}}{{b}^{2}}+{{\omega }^{3}}{{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+{{\omega }^{3}}\omega bc+{{\omega }^{2}}ac+\omega ac\]
As we know that in the given equation \[1,\omega ,{{\omega }^{2}}\] are the cube roots of unity and to proceed further in the solution we should know the property of cube roots of unity given below,
Property:
\[{{\omega }^{3}}=1\]
If we use the above property in LHS we will get,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+1\times {{b}^{2}}+1\times {{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+1\times \omega bc+{{\omega }^{2}}ac+\omega ac\]
Further simplification in the above equation will give,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{\omega }^{2}}ab+\omega ab+{{\omega }^{2}}bc+\omega bc+{{\omega }^{2}}ac+\omega ac\]
If we take ‘ab’ common from the above equation we will get,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+\left( {{\omega }^{2}}+\omega \right)ab+{{\omega }^{2}}bc+\omega bc+{{\omega }^{2}}ac+\omega ac\]
Similarly if we take ‘bc’ and ‘ac’ common from the above equation we will get,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+\left( {{\omega }^{2}}+\omega \right)ab+\left( {{\omega }^{2}}+\omega \right)bc+\left( {{\omega }^{2}}+\omega \right)ac\]
Now before we proceed further in the solution we should know the another important property of the cube roots of unity which is given below,
Property:
\[1+\omega +{{\omega }^{2}}=0\]
If we shift 1 on the right side of the equation we will get,
\[\omega +{{\omega }^{2}}=-1\]
If we use the above value in LHS we will get,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+\left( -1 \right)ab+\left( -1 \right)bc+\left( -1 \right)ac\]
Further simplification in the above equation will give,
Therefore, Left Hand Side (LHS) = \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab\]
If we compare the above equation with equation (2) we will get,
Left Hand Side (LHS) = Right Hand Side (RHS)
Therefore,
\[\left( a+\omega b+{{\omega }^{2}}c \right)\left( a+{{\omega }^{2}}b+\omega c \right)={{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab\]
Hence proved.
Therefore the given equation is true.
Note: Many students directly use the property \[1+\omega +{{\omega }^{2}}=0\] in the given equation without simplifying it and therefore face many difficulties in doing calculations. Do remember to simplify the equation so that you can use the simple value -1 of the property without any \[\omega \] to minimize your calculations.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

