
Show that the function $h\left( x \right)=\tan x$ is differentiable at any $a\in \mathbb{R}$ and $a$ is not an odd multiple of $\dfrac{\pi }{2}$ and $h'\left( a \right)={{\sec }^{2}}a$. In general, if $x$ is not an odd multiple of $\dfrac{\pi }{2}$, then $h'\left( x \right)={{\sec }^{2}}x.$.
Answer
617.4k+ views
Hint: To check the differentiability of a function, we will find the derivative of the function. To find the derivative $h'\left( x \right)$ of the function $h\left( x \right)$, we can use the first principle of derivative and the functional relations given in the question.
Complete step-by-step answer:
In the question, it is given a function; \[h\left( x \right)=\tan x\]
To check differentiability of this function, we have to find the derivative of $h\left( x \right)$. To find the derivative of the given function, we will use the first principle of derivative from which, the derivative of any function is given by the formula;
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
In the question, the function is $h\left( x \right)=\tan x$. Substituting $h\left( x \right)=\tan x$and $h\left( x+h \right)=\tan (x+h)$, we get;
\[\Rightarrow h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \tan \left( x+h \right)-\tan x \right)}{h}\]
We have a formula in trigonometry; \[\tan \left( x+h \right)=\dfrac{\tan x+\tan h}{1-\tan x\tan h}\]. Substituting this formula, we get;
\[\begin{align}
& h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{\dfrac{\tan x+\tan h}{1-\tan x\tan h}-\tan x}{h} \right) \\
& \Rightarrow h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{\tan x+\tan h-\tan x\left( 1-\tan x\tan h \right)}{h\left( 1-\tan x\tan h \right)} \right) \\
& \Rightarrow h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan x+\tan h-\tan x+{{\tan }^{2}}x\tan h}{h\left( 1-\tan x\tan h \right)} \\
& \Rightarrow h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h}\dfrac{\left( 1+{{\tan }^{2}}x \right)}{\left( 1-\tan x\tan h \right)} \\
\end{align}\]
Since the limit is with respect to $h$, we can take $1+{{\tan }^{2}}x$ out of the individual limit in the above equation.
$\Rightarrow h'\left( x \right)=\left( 1+{{\tan }^{2}}x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h\left( 1-\tanh \tan x \right)}........\left( I \right)$
In $\left( I \right)$, $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h\left( 1-\tanh \tan x \right)}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h}.............\left( II \right)$.
Also, we have a formula$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h}=1.......\left( III \right)$.
Substituting these limits from $\left( II \right)$ and $\left( III \right)$ in equation $\left( I \right)$, we get;
$h'\left( x \right)=1+{{\tan }^{2}}x$
Also, from trigonometry, we have a formula; $1+{{\tan }^{2}}x={{\sec }^{2}}x$.
$\Rightarrow h'\left( x \right)={{\sec }^{2}}x........\left( IV \right)$
Substituting $x=a$ in the equation $\left( IV \right)$, we get;
$h'\left( a \right)={{\sec }^{2}}a$
If we draw the graph of $\Rightarrow h'\left( x \right)={{\sec }^{2}}x$
It can be observed that the graph of $h'\left( x \right)$ is discontinuous at $\left\{ ......\dfrac{-5\pi }{2},\dfrac{-3\pi }{2},\dfrac{-\pi }{2},0,\dfrac{\pi }{2},\dfrac{3\pi }{2},\dfrac{5\pi }{2},..... \right\}$
i.e., odd multiples of $\dfrac{\pi }{2}.$
This means that $h\left( x \right)$ is non-differentiable at odd multiples of $\dfrac{\pi }{2}.$
$\Rightarrow h\left( x \right)$ is differentiable for $x\in \mathbb{R}-\left\{ \text{odd multiple of }\dfrac{\pi }{2} \right\}$
Note: The question can be done directly if one knows the derivatives of $\tan x$ instead of finding the derivatives using the first principle of derivative.
Complete step-by-step answer:
In the question, it is given a function; \[h\left( x \right)=\tan x\]
To check differentiability of this function, we have to find the derivative of $h\left( x \right)$. To find the derivative of the given function, we will use the first principle of derivative from which, the derivative of any function is given by the formula;
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
In the question, the function is $h\left( x \right)=\tan x$. Substituting $h\left( x \right)=\tan x$and $h\left( x+h \right)=\tan (x+h)$, we get;
\[\Rightarrow h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \tan \left( x+h \right)-\tan x \right)}{h}\]
We have a formula in trigonometry; \[\tan \left( x+h \right)=\dfrac{\tan x+\tan h}{1-\tan x\tan h}\]. Substituting this formula, we get;
\[\begin{align}
& h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{\dfrac{\tan x+\tan h}{1-\tan x\tan h}-\tan x}{h} \right) \\
& \Rightarrow h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{\tan x+\tan h-\tan x\left( 1-\tan x\tan h \right)}{h\left( 1-\tan x\tan h \right)} \right) \\
& \Rightarrow h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan x+\tan h-\tan x+{{\tan }^{2}}x\tan h}{h\left( 1-\tan x\tan h \right)} \\
& \Rightarrow h'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h}\dfrac{\left( 1+{{\tan }^{2}}x \right)}{\left( 1-\tan x\tan h \right)} \\
\end{align}\]
Since the limit is with respect to $h$, we can take $1+{{\tan }^{2}}x$ out of the individual limit in the above equation.
$\Rightarrow h'\left( x \right)=\left( 1+{{\tan }^{2}}x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h\left( 1-\tanh \tan x \right)}........\left( I \right)$
In $\left( I \right)$, $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h\left( 1-\tanh \tan x \right)}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h}.............\left( II \right)$.
Also, we have a formula$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan h}{h}=1.......\left( III \right)$.
Substituting these limits from $\left( II \right)$ and $\left( III \right)$ in equation $\left( I \right)$, we get;
$h'\left( x \right)=1+{{\tan }^{2}}x$
Also, from trigonometry, we have a formula; $1+{{\tan }^{2}}x={{\sec }^{2}}x$.
$\Rightarrow h'\left( x \right)={{\sec }^{2}}x........\left( IV \right)$
Substituting $x=a$ in the equation $\left( IV \right)$, we get;
$h'\left( a \right)={{\sec }^{2}}a$
If we draw the graph of $\Rightarrow h'\left( x \right)={{\sec }^{2}}x$
It can be observed that the graph of $h'\left( x \right)$ is discontinuous at $\left\{ ......\dfrac{-5\pi }{2},\dfrac{-3\pi }{2},\dfrac{-\pi }{2},0,\dfrac{\pi }{2},\dfrac{3\pi }{2},\dfrac{5\pi }{2},..... \right\}$
i.e., odd multiples of $\dfrac{\pi }{2}.$
This means that $h\left( x \right)$ is non-differentiable at odd multiples of $\dfrac{\pi }{2}.$
$\Rightarrow h\left( x \right)$ is differentiable for $x\in \mathbb{R}-\left\{ \text{odd multiple of }\dfrac{\pi }{2} \right\}$
Note: The question can be done directly if one knows the derivatives of $\tan x$ instead of finding the derivatives using the first principle of derivative.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

