
Show that \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Answer
586.8k+ views
Hint- To solve this question, we need to apply the theory and various formulas of trigonometric functions. As we observe, cosec and cot are two trigonometry functions present in the left hand side (LHS) of the given expression. So, to show that LHS and RHS are equal, we will manipulate LHS using trigonometry identity or formula such that we will get RHS by solving LHS.
Complete step-by-step answer:
According to question, we have
\[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Here, on the left hand side we have \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\].
So, we need to manipulate LHS in such a manner that we will get RHS.
I.e. in this case RHS will be $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Now, LHS = \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]
= \[{\left( {\dfrac{{\text{1}}}{{{\text{sinA}}}}{\text{ - }}\dfrac{{{\text{cosA}}}}{{{\text{sinA}}}}} \right)^{\text{2}}}\]
= ${\left( {\dfrac{{{\text{1 - cosA}}}}{{{\text{sinA}}}}} \right)^{\text{2}}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{{{\text{(sinA)}}}^{\text{2}}}}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{\text{si}}{{\text{n}}^{\text{2}}}{\text{A}}}}$
=$\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{\text{1 - co}}{{\text{s}}^{\text{2}}}{\text{A}}}}$
=$\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{{\text{1}}^2}{\text{ - co}}{{\text{s}}^{\text{2}}}{\text{A}}}}$
As we know, ${{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}{\text{ = (a + b)(a - b)}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{\left( {{\text{1 + cosA}}} \right)\left( {{\text{1 - cosA}}} \right)}}$
= $\dfrac{{\left( {{\text{1 - cosA}}} \right)}}{{\left( {{\text{1 + cosA}}} \right)}}$
= RHS
Since, LHS=RHS verified.
So, we say we show that \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$.
Note- We need to remember some basic formulas related to trigonometry. So that we easily understand the problem and apply these formulas. Some of them are mentioned below which we used in this question.
These Identities are given as-
sin$\theta $ = $\dfrac{{\text{1}}}{{{\text{cosec}}\theta }}$
cos$\theta $ = $\dfrac{{\text{1}}}{{{\text{sec}}\theta }}$
tan$\theta $ = $\dfrac{{\text{1}}}{{{\text{cot}}\theta }}$
\[{\text{cot}}\theta \]= $\dfrac{{{\text{cos}}\theta }}{{{\text{sin}}\theta }}$
Complete step-by-step answer:
According to question, we have
\[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Here, on the left hand side we have \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\].
So, we need to manipulate LHS in such a manner that we will get RHS.
I.e. in this case RHS will be $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Now, LHS = \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]
= \[{\left( {\dfrac{{\text{1}}}{{{\text{sinA}}}}{\text{ - }}\dfrac{{{\text{cosA}}}}{{{\text{sinA}}}}} \right)^{\text{2}}}\]
= ${\left( {\dfrac{{{\text{1 - cosA}}}}{{{\text{sinA}}}}} \right)^{\text{2}}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{{{\text{(sinA)}}}^{\text{2}}}}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{\text{si}}{{\text{n}}^{\text{2}}}{\text{A}}}}$
=$\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{\text{1 - co}}{{\text{s}}^{\text{2}}}{\text{A}}}}$
=$\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{{\text{1}}^2}{\text{ - co}}{{\text{s}}^{\text{2}}}{\text{A}}}}$
As we know, ${{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}{\text{ = (a + b)(a - b)}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{\left( {{\text{1 + cosA}}} \right)\left( {{\text{1 - cosA}}} \right)}}$
= $\dfrac{{\left( {{\text{1 - cosA}}} \right)}}{{\left( {{\text{1 + cosA}}} \right)}}$
= RHS
Since, LHS=RHS verified.
So, we say we show that \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$.
Note- We need to remember some basic formulas related to trigonometry. So that we easily understand the problem and apply these formulas. Some of them are mentioned below which we used in this question.
These Identities are given as-
sin$\theta $ = $\dfrac{{\text{1}}}{{{\text{cosec}}\theta }}$
cos$\theta $ = $\dfrac{{\text{1}}}{{{\text{sec}}\theta }}$
tan$\theta $ = $\dfrac{{\text{1}}}{{{\text{cot}}\theta }}$
\[{\text{cot}}\theta \]= $\dfrac{{{\text{cos}}\theta }}{{{\text{sin}}\theta }}$
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

