
Show that \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Answer
594.9k+ views
Hint- To solve this question, we need to apply the theory and various formulas of trigonometric functions. As we observe, cosec and cot are two trigonometry functions present in the left hand side (LHS) of the given expression. So, to show that LHS and RHS are equal, we will manipulate LHS using trigonometry identity or formula such that we will get RHS by solving LHS.
Complete step-by-step answer:
According to question, we have
\[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Here, on the left hand side we have \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\].
So, we need to manipulate LHS in such a manner that we will get RHS.
I.e. in this case RHS will be $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Now, LHS = \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]
= \[{\left( {\dfrac{{\text{1}}}{{{\text{sinA}}}}{\text{ - }}\dfrac{{{\text{cosA}}}}{{{\text{sinA}}}}} \right)^{\text{2}}}\]
= ${\left( {\dfrac{{{\text{1 - cosA}}}}{{{\text{sinA}}}}} \right)^{\text{2}}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{{{\text{(sinA)}}}^{\text{2}}}}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{\text{si}}{{\text{n}}^{\text{2}}}{\text{A}}}}$
=$\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{\text{1 - co}}{{\text{s}}^{\text{2}}}{\text{A}}}}$
=$\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{{\text{1}}^2}{\text{ - co}}{{\text{s}}^{\text{2}}}{\text{A}}}}$
As we know, ${{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}{\text{ = (a + b)(a - b)}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{\left( {{\text{1 + cosA}}} \right)\left( {{\text{1 - cosA}}} \right)}}$
= $\dfrac{{\left( {{\text{1 - cosA}}} \right)}}{{\left( {{\text{1 + cosA}}} \right)}}$
= RHS
Since, LHS=RHS verified.
So, we say we show that \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$.
Note- We need to remember some basic formulas related to trigonometry. So that we easily understand the problem and apply these formulas. Some of them are mentioned below which we used in this question.
These Identities are given as-
sin$\theta $ = $\dfrac{{\text{1}}}{{{\text{cosec}}\theta }}$
cos$\theta $ = $\dfrac{{\text{1}}}{{{\text{sec}}\theta }}$
tan$\theta $ = $\dfrac{{\text{1}}}{{{\text{cot}}\theta }}$
\[{\text{cot}}\theta \]= $\dfrac{{{\text{cos}}\theta }}{{{\text{sin}}\theta }}$
Complete step-by-step answer:
According to question, we have
\[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Here, on the left hand side we have \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\].
So, we need to manipulate LHS in such a manner that we will get RHS.
I.e. in this case RHS will be $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Now, LHS = \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]
= \[{\left( {\dfrac{{\text{1}}}{{{\text{sinA}}}}{\text{ - }}\dfrac{{{\text{cosA}}}}{{{\text{sinA}}}}} \right)^{\text{2}}}\]
= ${\left( {\dfrac{{{\text{1 - cosA}}}}{{{\text{sinA}}}}} \right)^{\text{2}}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{{{\text{(sinA)}}}^{\text{2}}}}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{\text{si}}{{\text{n}}^{\text{2}}}{\text{A}}}}$
=$\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{\text{1 - co}}{{\text{s}}^{\text{2}}}{\text{A}}}}$
=$\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{{\text{1}}^2}{\text{ - co}}{{\text{s}}^{\text{2}}}{\text{A}}}}$
As we know, ${{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}{\text{ = (a + b)(a - b)}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{\left( {{\text{1 + cosA}}} \right)\left( {{\text{1 - cosA}}} \right)}}$
= $\dfrac{{\left( {{\text{1 - cosA}}} \right)}}{{\left( {{\text{1 + cosA}}} \right)}}$
= RHS
Since, LHS=RHS verified.
So, we say we show that \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$.
Note- We need to remember some basic formulas related to trigonometry. So that we easily understand the problem and apply these formulas. Some of them are mentioned below which we used in this question.
These Identities are given as-
sin$\theta $ = $\dfrac{{\text{1}}}{{{\text{cosec}}\theta }}$
cos$\theta $ = $\dfrac{{\text{1}}}{{{\text{sec}}\theta }}$
tan$\theta $ = $\dfrac{{\text{1}}}{{{\text{cot}}\theta }}$
\[{\text{cot}}\theta \]= $\dfrac{{{\text{cos}}\theta }}{{{\text{sin}}\theta }}$
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

In which state Jews are not considered minors?

What is Ornithophobia?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

