
Show that \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Answer
613.5k+ views
Hint- To solve this question, we need to apply the theory and various formulas of trigonometric functions. As we observe, cosec and cot are two trigonometry functions present in the left hand side (LHS) of the given expression. So, to show that LHS and RHS are equal, we will manipulate LHS using trigonometry identity or formula such that we will get RHS by solving LHS.
Complete step-by-step answer:
According to question, we have
\[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Here, on the left hand side we have \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\].
So, we need to manipulate LHS in such a manner that we will get RHS.
I.e. in this case RHS will be $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Now, LHS = \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]
= \[{\left( {\dfrac{{\text{1}}}{{{\text{sinA}}}}{\text{ - }}\dfrac{{{\text{cosA}}}}{{{\text{sinA}}}}} \right)^{\text{2}}}\]
= ${\left( {\dfrac{{{\text{1 - cosA}}}}{{{\text{sinA}}}}} \right)^{\text{2}}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{{{\text{(sinA)}}}^{\text{2}}}}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{\text{si}}{{\text{n}}^{\text{2}}}{\text{A}}}}$
=$\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{\text{1 - co}}{{\text{s}}^{\text{2}}}{\text{A}}}}$
=$\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{{\text{1}}^2}{\text{ - co}}{{\text{s}}^{\text{2}}}{\text{A}}}}$
As we know, ${{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}{\text{ = (a + b)(a - b)}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{\left( {{\text{1 + cosA}}} \right)\left( {{\text{1 - cosA}}} \right)}}$
= $\dfrac{{\left( {{\text{1 - cosA}}} \right)}}{{\left( {{\text{1 + cosA}}} \right)}}$
= RHS
Since, LHS=RHS verified.
So, we say we show that \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$.
Note- We need to remember some basic formulas related to trigonometry. So that we easily understand the problem and apply these formulas. Some of them are mentioned below which we used in this question.
These Identities are given as-
sin$\theta $ = $\dfrac{{\text{1}}}{{{\text{cosec}}\theta }}$
cos$\theta $ = $\dfrac{{\text{1}}}{{{\text{sec}}\theta }}$
tan$\theta $ = $\dfrac{{\text{1}}}{{{\text{cot}}\theta }}$
\[{\text{cot}}\theta \]= $\dfrac{{{\text{cos}}\theta }}{{{\text{sin}}\theta }}$
Complete step-by-step answer:
According to question, we have
\[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Here, on the left hand side we have \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\].
So, we need to manipulate LHS in such a manner that we will get RHS.
I.e. in this case RHS will be $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$
Now, LHS = \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]
= \[{\left( {\dfrac{{\text{1}}}{{{\text{sinA}}}}{\text{ - }}\dfrac{{{\text{cosA}}}}{{{\text{sinA}}}}} \right)^{\text{2}}}\]
= ${\left( {\dfrac{{{\text{1 - cosA}}}}{{{\text{sinA}}}}} \right)^{\text{2}}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{{{\text{(sinA)}}}^{\text{2}}}}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{\text{si}}{{\text{n}}^{\text{2}}}{\text{A}}}}$
=$\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{\text{1 - co}}{{\text{s}}^{\text{2}}}{\text{A}}}}$
=$\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{{{\text{1}}^2}{\text{ - co}}{{\text{s}}^{\text{2}}}{\text{A}}}}$
As we know, ${{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}{\text{ = (a + b)(a - b)}}$
= $\dfrac{{{{\left( {{\text{1 - cosA}}} \right)}^{\text{2}}}}}{{\left( {{\text{1 + cosA}}} \right)\left( {{\text{1 - cosA}}} \right)}}$
= $\dfrac{{\left( {{\text{1 - cosA}}} \right)}}{{\left( {{\text{1 + cosA}}} \right)}}$
= RHS
Since, LHS=RHS verified.
So, we say we show that \[{\left( {{\text{cscA - cotA}}} \right)^{\text{2}}}\]= $\dfrac{{{\text{1 - cosA}}}}{{{\text{1 + cosA}}}}$.
Note- We need to remember some basic formulas related to trigonometry. So that we easily understand the problem and apply these formulas. Some of them are mentioned below which we used in this question.
These Identities are given as-
sin$\theta $ = $\dfrac{{\text{1}}}{{{\text{cosec}}\theta }}$
cos$\theta $ = $\dfrac{{\text{1}}}{{{\text{sec}}\theta }}$
tan$\theta $ = $\dfrac{{\text{1}}}{{{\text{cot}}\theta }}$
\[{\text{cot}}\theta \]= $\dfrac{{{\text{cos}}\theta }}{{{\text{sin}}\theta }}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

