
Show that: $\dfrac{{\sin A}}{{\sec A + \tan A - 1}} + \dfrac{{\cos A}}{{\cos ecA + \cot A - 1}} = 1$
Answer
512.7k+ views
Hint: The given question deals with basic simplification of trigonometric functions by using some of the simple trigonometric formulae such as $\sec x = \dfrac{1}{{\cos x}}$ and $\tan x = \dfrac{{\sin x}}{{\cos x}}$. Basic algebraic rules and trigonometric identities are to be kept in mind while simplifying the given problem and proving the result given to us. We will first convert all the trigonometric functions into sine and cosine and then simplify the expression by cancelling the common factors in numerator and denominator.
Complete answer: In the given problem, we have to prove a trigonometric equality. For proving the desired result, we need to have a good grip over the basic trigonometric formulae and identities.
Now, we need to make the left and right sides of the equation equal.
L.H.S. $ = \dfrac{{\sin A}}{{\sec A + \tan A - 1}} + \dfrac{{\cos A}}{{\cos ecA + \cot A - 1}}$
Now, we convert the trigonometric functions into sine and cosine using some basic trigonometric formulae $\sec x = \dfrac{1}{{\cos x}}$, $\cot x = \dfrac{{\cos x}}{{\sin x}}$ and $\tan x = \dfrac{{\sin x}}{{\cos x}}$. So, we get,
$ = \dfrac{{\sin A}}{{\dfrac{1}{{\cos A}} + \dfrac{{\sin A}}{{\cos A}} - 1}} + \dfrac{{\cos A}}{{\dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}} - 1}}$
Now, we take the LCM of rational expressions in denominator, we get,
$ = \dfrac{{\sin A}}{{\dfrac{{1 + \sin A - \cos A}}{{\cos A}}}} + \dfrac{{\cos A}}{{\dfrac{{1 + \cos A - \sin A}}{{\sin A}}}}$
Simplifying the equation, we get,
$ = \dfrac{{\sin A\cos A}}{{1 + \left( {\sin A - \cos A} \right)}} + \dfrac{{\sin A\cos A}}{{1 - \left( {\sin A - \cos A} \right)}}$
Now, multiplying the numerator and denominator by the same number, we get,
$ = \dfrac{{\sin A\cos A}}{{1 + \left( {\sin A - \cos A} \right)}} \times \left[ {\dfrac{{1 - \left( {\sin A - \cos A} \right)}}{{1 - \left( {\sin A - \cos A} \right)}}} \right] + \dfrac{{\sin A\cos A}}{{1 - \left( {\sin A - \cos A} \right)}} \times \left[ {\dfrac{{1 + \left( {\sin A - \cos A} \right)}}{{1 + \left( {\sin A - \cos A} \right)}}} \right]$
Now, using the algebraic identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$,
$ = \dfrac{{\sin A\cos A\left( {1 - \sin A + \cos A} \right)}}{{1 - {{\left( {\sin A - \cos A} \right)}^2}}} + \dfrac{{\sin A\cos A\left( {1 + \sin A - \cos A} \right)}}{{1 - {{\left( {\sin A - \cos A} \right)}^2}}}$
Now, adding the numerators as the denominators, we get,
$ = \dfrac{{\sin A\cos A\left( {1 - \sin A + \cos A} \right) + \sin A\cos A\left( {1 + \sin A - \cos A} \right)}}{{1 - \left( {{{\sin }^2}A + {{\cos }^2}A - 2\sin A\cos A} \right)}}$
Opening the brackets and cancelling the like terms with opposite signs, we get,
$ = \dfrac{{\sin A\cos A - {{\sin }^2}A\cos A + \sin A{{\cos }^2}A + \sin A\cos A + {{\sin }^2}A\cos A - \sin A{{\cos }^2}A}}{{1 - \left( {1 - 2\sin A\cos A} \right)}}$
$ = \dfrac{{\sin A\cos A + \sin A\cos A}}{{1 - 1 + 2\sin A\cos A}}$
Cancelling the common factors in numerator and denominator, we get,
$ = \dfrac{{2\sin A\cos A}}{{2\sin A\cos A}}$
$ = 1$
R.H.S. $ = 1$
As the left side of the equation is equal to the right side of the equation, we have,
$\dfrac{{\sin A}}{{\sec A + \tan A - 1}} + \dfrac{{\cos A}}{{\cos ecA + \cot A - 1}} = 1$
Hence, Proved.
Note:
The problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations. We must also express rational functions in simplest forms by cancelling the common factors in numerator and denominator.
Complete answer: In the given problem, we have to prove a trigonometric equality. For proving the desired result, we need to have a good grip over the basic trigonometric formulae and identities.
Now, we need to make the left and right sides of the equation equal.
L.H.S. $ = \dfrac{{\sin A}}{{\sec A + \tan A - 1}} + \dfrac{{\cos A}}{{\cos ecA + \cot A - 1}}$
Now, we convert the trigonometric functions into sine and cosine using some basic trigonometric formulae $\sec x = \dfrac{1}{{\cos x}}$, $\cot x = \dfrac{{\cos x}}{{\sin x}}$ and $\tan x = \dfrac{{\sin x}}{{\cos x}}$. So, we get,
$ = \dfrac{{\sin A}}{{\dfrac{1}{{\cos A}} + \dfrac{{\sin A}}{{\cos A}} - 1}} + \dfrac{{\cos A}}{{\dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}} - 1}}$
Now, we take the LCM of rational expressions in denominator, we get,
$ = \dfrac{{\sin A}}{{\dfrac{{1 + \sin A - \cos A}}{{\cos A}}}} + \dfrac{{\cos A}}{{\dfrac{{1 + \cos A - \sin A}}{{\sin A}}}}$
Simplifying the equation, we get,
$ = \dfrac{{\sin A\cos A}}{{1 + \left( {\sin A - \cos A} \right)}} + \dfrac{{\sin A\cos A}}{{1 - \left( {\sin A - \cos A} \right)}}$
Now, multiplying the numerator and denominator by the same number, we get,
$ = \dfrac{{\sin A\cos A}}{{1 + \left( {\sin A - \cos A} \right)}} \times \left[ {\dfrac{{1 - \left( {\sin A - \cos A} \right)}}{{1 - \left( {\sin A - \cos A} \right)}}} \right] + \dfrac{{\sin A\cos A}}{{1 - \left( {\sin A - \cos A} \right)}} \times \left[ {\dfrac{{1 + \left( {\sin A - \cos A} \right)}}{{1 + \left( {\sin A - \cos A} \right)}}} \right]$
Now, using the algebraic identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$,
$ = \dfrac{{\sin A\cos A\left( {1 - \sin A + \cos A} \right)}}{{1 - {{\left( {\sin A - \cos A} \right)}^2}}} + \dfrac{{\sin A\cos A\left( {1 + \sin A - \cos A} \right)}}{{1 - {{\left( {\sin A - \cos A} \right)}^2}}}$
Now, adding the numerators as the denominators, we get,
$ = \dfrac{{\sin A\cos A\left( {1 - \sin A + \cos A} \right) + \sin A\cos A\left( {1 + \sin A - \cos A} \right)}}{{1 - \left( {{{\sin }^2}A + {{\cos }^2}A - 2\sin A\cos A} \right)}}$
Opening the brackets and cancelling the like terms with opposite signs, we get,
$ = \dfrac{{\sin A\cos A - {{\sin }^2}A\cos A + \sin A{{\cos }^2}A + \sin A\cos A + {{\sin }^2}A\cos A - \sin A{{\cos }^2}A}}{{1 - \left( {1 - 2\sin A\cos A} \right)}}$
$ = \dfrac{{\sin A\cos A + \sin A\cos A}}{{1 - 1 + 2\sin A\cos A}}$
Cancelling the common factors in numerator and denominator, we get,
$ = \dfrac{{2\sin A\cos A}}{{2\sin A\cos A}}$
$ = 1$
R.H.S. $ = 1$
As the left side of the equation is equal to the right side of the equation, we have,
$\dfrac{{\sin A}}{{\sec A + \tan A - 1}} + \dfrac{{\cos A}}{{\cos ecA + \cot A - 1}} = 1$
Hence, Proved.
Note:
The problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations. We must also express rational functions in simplest forms by cancelling the common factors in numerator and denominator.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

