
Show that a diagonal of a parallelogram divides into two congruent triangles and hence prove that the opposite sides of a parallelogram are equal.
Answer
512.7k+ views
Hint: First we make the diagram of a parallelogram with any one of the diagonal. After this, in the two triangles formed we will check for the congruency of the triangles. Here one side and two angles formed on the line are equal. So both triangles are congruent by ASA rule of congruence.
Complete step-by-step answer:
The diagram for the question is as below:
Diagonal AC divides the parallelogram into two triangles $\vartriangle $ABC and $\vartriangle $ADC.
In $\vartriangle $ABC and $\vartriangle $ADC:
$\because $ AD||BC
$\angle $BAC = $\angle $DCA ( By alternate angle)
AC = AC (Common side)
$\angle $BCA = $\angle $DAC ( By alternate angle)
In these two triangles, one side and two angles made on this side are equal.
Therefore by ASA rule of congruence:
$\vartriangle $ABC $ \cong $ $\vartriangle $ADC.
Since, both these triangles are congruent. So, all the corresponding sides and angles of one triangle are equal to that of the other.
$\therefore $ AD= BC
And AB = CD.
Therefore, it is proved that the diagonal of a parallelogram divides it into two congruent triangles and also opposite sides of a parallelogram are equal.
Note- In the question where you have to show two triangles congruent. You should remember the following rule of congruence:
1.SSS (All corresponding sides of one triangle is equal to other triangle)
2.SAS (Two sides and one angle between the two sides of one triangle is equal to the other)
3. ASA (one side and two angles made on this side are equal)
4.RHS ( This is for right triangles. One side and hypotenuse of one right triangle is equal to other right triangle)
Complete step-by-step answer:
The diagram for the question is as below:
Diagonal AC divides the parallelogram into two triangles $\vartriangle $ABC and $\vartriangle $ADC.
In $\vartriangle $ABC and $\vartriangle $ADC:
$\because $ AD||BC
$\angle $BAC = $\angle $DCA ( By alternate angle)
AC = AC (Common side)
$\angle $BCA = $\angle $DAC ( By alternate angle)
In these two triangles, one side and two angles made on this side are equal.
Therefore by ASA rule of congruence:
$\vartriangle $ABC $ \cong $ $\vartriangle $ADC.
Since, both these triangles are congruent. So, all the corresponding sides and angles of one triangle are equal to that of the other.
$\therefore $ AD= BC
And AB = CD.
Therefore, it is proved that the diagonal of a parallelogram divides it into two congruent triangles and also opposite sides of a parallelogram are equal.
Note- In the question where you have to show two triangles congruent. You should remember the following rule of congruence:
1.SSS (All corresponding sides of one triangle is equal to other triangle)
2.SAS (Two sides and one angle between the two sides of one triangle is equal to the other)
3. ASA (one side and two angles made on this side are equal)
4.RHS ( This is for right triangles. One side and hypotenuse of one right triangle is equal to other right triangle)
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

Differentiate between Food chain and Food web class 10 biology CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

Write the difference between soap and detergent class 10 chemistry CBSE

