Answer
Verified
411k+ views
Hint: Here we will first assume an element of the set A and then we will form the condition between set A and set B in terms of the subset. Then we will assume an element belongs to set B and form the condition between set A and set B in terms of the subset. Then by comparing these conditions we will get the required expression.
Complete step-by-step answer:
Let \[x\] be an element which belongs to set A i.e. \[x \in A\].
It means that \[x\] will also belong to the union of set A and set B i.e. \[x \in A \cup B\].
It is given that \[A \cup B = A \cap B\] which means \[x\] will also belong to the intersection of set A and set B i.e. \[x \in A \cap B\]. By this, we can say that the element belongs to the set B also i.e. \[x \in B\].
Therefore, by this, we can say that if the element belongs to set A, then it must belong to the set B which means set A is the subset of set B.
\[\Rightarrow A\subset B\]……………………..\[\left( 1 \right)\]
Similarly, let \[y\] be an element which belongs to set B or \[y \in B\].
Therefore, it means that \[y\] will also belong to the union of set A and set B i.e. \[y \in A \cup B\].
It is given that \[A \cup B = A \cap B\] which means \[y\] will also belong to the intersection of set A and set B i.e. \[y \in A \cap B\]. By this, we can say that the element belongs to set A also i.e. \[y \in A\].
Therefore, by this, we can say that if the element belongs to set B, then it must belong to set A which means set B is the subset of set A.
\[\Rightarrow B\subset A\]……………………..\[\left( 2 \right)\]
From equation \[\left( 1 \right)\] and equation \[\left( 2 \right)\], we can say that set A equals the set B.
\[\Rightarrow A=B\]
Hence proved.
Note: Here we have to note that the set which includes all the elements from every set of data is called as union and denoted as \[A \cup B\]. The set which includes only common terms between the given sets is called an intersection and generally denoted as \[A \cap B\]. A subset is the set of the elements whose elements are present in the other main set. It is denoted as \[A \subset B\]. If the two sets are given and those two sets are the subsets to each other, then both the sets are equal.
Complete step-by-step answer:
Let \[x\] be an element which belongs to set A i.e. \[x \in A\].
It means that \[x\] will also belong to the union of set A and set B i.e. \[x \in A \cup B\].
It is given that \[A \cup B = A \cap B\] which means \[x\] will also belong to the intersection of set A and set B i.e. \[x \in A \cap B\]. By this, we can say that the element belongs to the set B also i.e. \[x \in B\].
Therefore, by this, we can say that if the element belongs to set A, then it must belong to the set B which means set A is the subset of set B.
\[\Rightarrow A\subset B\]……………………..\[\left( 1 \right)\]
Similarly, let \[y\] be an element which belongs to set B or \[y \in B\].
Therefore, it means that \[y\] will also belong to the union of set A and set B i.e. \[y \in A \cup B\].
It is given that \[A \cup B = A \cap B\] which means \[y\] will also belong to the intersection of set A and set B i.e. \[y \in A \cap B\]. By this, we can say that the element belongs to set A also i.e. \[y \in A\].
Therefore, by this, we can say that if the element belongs to set B, then it must belong to set A which means set B is the subset of set A.
\[\Rightarrow B\subset A\]……………………..\[\left( 2 \right)\]
From equation \[\left( 1 \right)\] and equation \[\left( 2 \right)\], we can say that set A equals the set B.
\[\Rightarrow A=B\]
Hence proved.
Note: Here we have to note that the set which includes all the elements from every set of data is called as union and denoted as \[A \cup B\]. The set which includes only common terms between the given sets is called an intersection and generally denoted as \[A \cap B\]. A subset is the set of the elements whose elements are present in the other main set. It is denoted as \[A \subset B\]. If the two sets are given and those two sets are the subsets to each other, then both the sets are equal.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE