
Show how \[\sqrt 5 \] can be represented on the number line.
Answer
575.7k+ views
Hint: We will first consider the given number which we have to represent on the number line. We will first draw the figure and draw the number line in it. We will mark two points 0 as O and 2 as A. After this draw a perpendicular at A and name the line as AX then mark a point at 1 unit on the perpendicular and mark it as the point B. Now, we will apply the Pythagoras theorem on the triangle OAB, and obtain the value of OB. Now, taking O as the center, we will cut the arc which will pass through the point B. The point on the right side of the point A that touches the number line will be the required point .
Complete step-by-step answer:
The objective is to represent \[\sqrt 5 \] on the number line.
We will first consider the number line which is made on the \[x\]-axis.
After this consider two points on the number line, zero is represented by O and 2 is represented as A. Now, draw a perpendicular on the point A and will name the line as AX.
Next, we will take 1 unit on the line AX and mark that point as B.
Now, we will apply the Pythagoras theorem on the triangle OAB and can find the value of line OB.
Thus, we have,
\[{\text{OA = 2}}\] and \[{\text{AB = 1}}\]
Hence,
\[
\Rightarrow {\left( {{\text{OB}}} \right)^2} = {\left( {{\text{OA}}} \right)^2} + {\left( {{\text{AB}}} \right)^2} \\
\Rightarrow {\left( {{\text{OB}}} \right)^2} = {\left( 2 \right)^2} + {1^2} \\
\Rightarrow {\left( {{\text{OB}}} \right)^2} = 5 \\
\Rightarrow {\text{OB}} = \sqrt 5 \\
\]
Thus, we get the line OB as \[\sqrt 5 \] units.
Next, we will take O as the center and OB as \[\sqrt 5 \] units as radius draw an arc cut the point B and touch the point C on the right side of point A.
Thus, \[{\text{OC = OB = }}\sqrt 5 \].
Hence, the figure is shown as follows:
Thus, we can conclude that point C represents \[\sqrt 5 \] on the number line.
Note: Constructing a figure is important. The value of line OB can be evaluated using the Pythagoras theorem only as triangle OAB is a right-angled triangle. The arc cutting the point B will touch the point C on the number line.
Complete step-by-step answer:
The objective is to represent \[\sqrt 5 \] on the number line.
We will first consider the number line which is made on the \[x\]-axis.
After this consider two points on the number line, zero is represented by O and 2 is represented as A. Now, draw a perpendicular on the point A and will name the line as AX.
Next, we will take 1 unit on the line AX and mark that point as B.
Now, we will apply the Pythagoras theorem on the triangle OAB and can find the value of line OB.
Thus, we have,
\[{\text{OA = 2}}\] and \[{\text{AB = 1}}\]
Hence,
\[
\Rightarrow {\left( {{\text{OB}}} \right)^2} = {\left( {{\text{OA}}} \right)^2} + {\left( {{\text{AB}}} \right)^2} \\
\Rightarrow {\left( {{\text{OB}}} \right)^2} = {\left( 2 \right)^2} + {1^2} \\
\Rightarrow {\left( {{\text{OB}}} \right)^2} = 5 \\
\Rightarrow {\text{OB}} = \sqrt 5 \\
\]
Thus, we get the line OB as \[\sqrt 5 \] units.
Next, we will take O as the center and OB as \[\sqrt 5 \] units as radius draw an arc cut the point B and touch the point C on the right side of point A.
Thus, \[{\text{OC = OB = }}\sqrt 5 \].
Hence, the figure is shown as follows:
Thus, we can conclude that point C represents \[\sqrt 5 \] on the number line.
Note: Constructing a figure is important. The value of line OB can be evaluated using the Pythagoras theorem only as triangle OAB is a right-angled triangle. The arc cutting the point B will touch the point C on the number line.
Recently Updated Pages
Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
List of coprime numbers from 1 to 100 class 7 maths CBSE

Fill in the blanks with appropriate modals a Drivers class 7 english CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Welcome speech for Christmas day celebration class 7 english CBSE

How does our election laws regulate election campa class 7 social science CBSE

Which animal has three hearts class 11 biology CBSE


