
What is the second derivative of $f\left( x \right)=\sin \left( {{x}^{2}} \right)$?
Answer
511.5k+ views
Hint: In this problem we need to calculate the second derivative of the given function that means we need to derive the given function two times with respect to the variable $x$. First, we will derive the given function with respect to the variable $x$ and simplify the equation by using the differentiation formulas $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right)$, $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, $\dfrac{d}{dx}\left( {{x}^{2}} \right)=2x$. By applying these formulas, we will get the value of ${{f}^{'}}\left( x \right)$ which is one time derivative of the given function. But we need to calculate the second derivative, so we will again derive the value ${{f}^{'}}\left( x \right)$ with respect to $x$. Here we will use the chain rule which is given by $\dfrac{d}{dx}\left( uv \right)=u{{v}^{'}}+v{{u}^{'}}$, some other differentiation formulas to simplify the equation.
Complete step-by-step answer:
Given function is $f\left( x \right)=\sin \left( {{x}^{2}} \right)$.
Differentiating the above function with respect to $x$, then we will get
${{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( \sin \left( {{x}^{2}} \right) \right)$
Applying the differentiation formulas $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right)$, $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, $\dfrac{d}{dx}\left( {{x}^{2}} \right)=2x$ in the above equation, then we will get
$\begin{align}
& {{f}^{'}}\left( x \right)=\cos \left( {{x}^{2}} \right)\times 2x \\
& \Rightarrow {{f}^{'}}\left( x \right)=2x\cos \left( {{x}^{2}} \right) \\
\end{align}$
From the above equation we have the value of ${{f}^{'}}\left( x \right)$. Which is our one-time derivative of the given function. But we need to calculate the second derivative of the function. So, we are going to differentiate the value of ${{f}^{'}}\left( x \right)$ with respect to $x$, then we will have
${{f}^{''}}\left( x \right)=\dfrac{d}{dx}\left( 2x\cos \left( {{x}^{2}} \right) \right)$
Here $2$ which is in multiplication is a constant, so we can differentiate a constant in multiplication. So, take out the constant from the differentiation, then we will get
${{f}^{''}}\left( x \right)=2\dfrac{d}{dx}\left( x\cos \left( {{x}^{2}} \right) \right)$
Using the chain rule of the differentiation which is $\dfrac{d}{dx}\left( uv \right)=u{{v}^{'}}+v{{u}^{'}}$, then we will have
${{f}^{''}}\left( x \right)=2\left[ x\dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)+\cos \left( {{x}^{2}} \right)\times \dfrac{d}{dx}\left( x \right) \right]$
We know the value of $\dfrac{d}{dx}\left( x \right)=1$. Substituting this value in the above equation, then we will get
${{f}^{''}}\left( x \right)=2\left[ x\times \dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)+\cos \left( {{x}^{2}} \right) \right]$
Considering the value $\dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)$ separately and using the formula $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right)$ in the value, then we will get
$\dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)=\dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)\times \dfrac{d}{dx}\left( {{x}^{2}} \right)$
We know that $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$, $\dfrac{d}{dx}\left( {{x}^{2}} \right)=2x$. Substituting these values in the above equation, then we will have
$\begin{align}
& \dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)=-\sin \left( {{x}^{2}} \right)\times 2x \\
& \Rightarrow \dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)=-2x\sin \left( {{x}^{2}} \right) \\
\end{align}$
Now substituting the value of $\dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)$ in the value of ${{f}^{''}}\left( x \right)$, then we will get
$\begin{align}
& {{f}^{''}}\left( x \right)=2\left[ x\left( -2x\sin \left( {{x}^{2}} \right) \right)+\cos \left( {{x}^{2}} \right) \right] \\
& \Rightarrow {{f}^{''}}\left( x \right)=2\left[ -2{{x}^{2}}\sin \left( {{x}^{2}} \right)+\cos \left( {{x}^{2}} \right) \right] \\
& \Rightarrow {{f}^{''}}\left( x \right)=-4{{x}^{2}}\sin \left( {{x}^{2}} \right)+2\cos \left( {{x}^{2}} \right) \\
\end{align}$
Hence the second derivative of the given function $f\left( x \right)=\sin \left( {{x}^{2}} \right)$ is ${{f}^{''}}\left( x \right)=-4{{x}^{2}}\sin \left( {{x}^{2}} \right)+2\cos \left( {{x}^{2}} \right)$.
Note: We can also solve this problem by using another method which is substitution method. We will use the substitution $u={{x}^{2}}$ and calculate the value of ${{f}^{'}}\left( x \right)$ in terms of $u$. Again, we will differentiate the value of ${{f}^{'}}\left( x \right)$ and calculate it in terms of $u$. In the final step again use the substitution $u={{x}^{2}}$ for the required result.
Complete step-by-step answer:
Given function is $f\left( x \right)=\sin \left( {{x}^{2}} \right)$.
Differentiating the above function with respect to $x$, then we will get
${{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( \sin \left( {{x}^{2}} \right) \right)$
Applying the differentiation formulas $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right)$, $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, $\dfrac{d}{dx}\left( {{x}^{2}} \right)=2x$ in the above equation, then we will get
$\begin{align}
& {{f}^{'}}\left( x \right)=\cos \left( {{x}^{2}} \right)\times 2x \\
& \Rightarrow {{f}^{'}}\left( x \right)=2x\cos \left( {{x}^{2}} \right) \\
\end{align}$
From the above equation we have the value of ${{f}^{'}}\left( x \right)$. Which is our one-time derivative of the given function. But we need to calculate the second derivative of the function. So, we are going to differentiate the value of ${{f}^{'}}\left( x \right)$ with respect to $x$, then we will have
${{f}^{''}}\left( x \right)=\dfrac{d}{dx}\left( 2x\cos \left( {{x}^{2}} \right) \right)$
Here $2$ which is in multiplication is a constant, so we can differentiate a constant in multiplication. So, take out the constant from the differentiation, then we will get
${{f}^{''}}\left( x \right)=2\dfrac{d}{dx}\left( x\cos \left( {{x}^{2}} \right) \right)$
Using the chain rule of the differentiation which is $\dfrac{d}{dx}\left( uv \right)=u{{v}^{'}}+v{{u}^{'}}$, then we will have
${{f}^{''}}\left( x \right)=2\left[ x\dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)+\cos \left( {{x}^{2}} \right)\times \dfrac{d}{dx}\left( x \right) \right]$
We know the value of $\dfrac{d}{dx}\left( x \right)=1$. Substituting this value in the above equation, then we will get
${{f}^{''}}\left( x \right)=2\left[ x\times \dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)+\cos \left( {{x}^{2}} \right) \right]$
Considering the value $\dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)$ separately and using the formula $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right)$ in the value, then we will get
$\dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)=\dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)\times \dfrac{d}{dx}\left( {{x}^{2}} \right)$
We know that $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$, $\dfrac{d}{dx}\left( {{x}^{2}} \right)=2x$. Substituting these values in the above equation, then we will have
$\begin{align}
& \dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)=-\sin \left( {{x}^{2}} \right)\times 2x \\
& \Rightarrow \dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)=-2x\sin \left( {{x}^{2}} \right) \\
\end{align}$
Now substituting the value of $\dfrac{d}{dx}\left( \cos \left( {{x}^{2}} \right) \right)$ in the value of ${{f}^{''}}\left( x \right)$, then we will get
$\begin{align}
& {{f}^{''}}\left( x \right)=2\left[ x\left( -2x\sin \left( {{x}^{2}} \right) \right)+\cos \left( {{x}^{2}} \right) \right] \\
& \Rightarrow {{f}^{''}}\left( x \right)=2\left[ -2{{x}^{2}}\sin \left( {{x}^{2}} \right)+\cos \left( {{x}^{2}} \right) \right] \\
& \Rightarrow {{f}^{''}}\left( x \right)=-4{{x}^{2}}\sin \left( {{x}^{2}} \right)+2\cos \left( {{x}^{2}} \right) \\
\end{align}$
Hence the second derivative of the given function $f\left( x \right)=\sin \left( {{x}^{2}} \right)$ is ${{f}^{''}}\left( x \right)=-4{{x}^{2}}\sin \left( {{x}^{2}} \right)+2\cos \left( {{x}^{2}} \right)$.
Note: We can also solve this problem by using another method which is substitution method. We will use the substitution $u={{x}^{2}}$ and calculate the value of ${{f}^{'}}\left( x \right)$ in terms of $u$. Again, we will differentiate the value of ${{f}^{'}}\left( x \right)$ and calculate it in terms of $u$. In the final step again use the substitution $u={{x}^{2}}$ for the required result.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

