
How do restriction enzymes cut at specific sequences?
Answer
524.1k+ views
Hint: Restriction enzymes are DNA-cutting enzymes. Each enzyme recognizes one or a few target sequences and cuts DNA at or near those sequences. Many restriction enzymes make staggered cuts, producing ends with single-stranded DNA overhangs.
Complete answer:
Restriction enzymes cut at specific sequences when it comes into contact with a DNA sequence with a shape that matches a part of the enzyme this specific part of DNA is called the recognition site, it wraps around the DNA and causes a break in both strands of the DNA molecule. Each restriction enzyme recognises a different and specific recognition site in bedDNA or DNA sequence.
Restriction enzymes cut DNA bonds between 3′ OH of one nucleotide and 5′ phosphate of the next one at the specific restriction site. Adding methyl groups to certain bases at the recognition sites on the bacterial DNA blocks the restriction enzyme so that they can bind and protect the bacterial DNA from being cut by themselves.
To cut DNA, all restriction enzymes make two cuts, once through each sugar-phosphate spine (for example each strand) of the DNA twofold helix. These enzymes are found in microbes and archaea and give a safeguard component against attacking infections.
Note: In DNA cloning, specialists make numerous duplicates of a piece of DNA, like a quality. As a rule, cloning includes embedding the quality into a piece of round DNA called a plasmid, which can be duplicated in microorganisms.
Complete answer:
Restriction enzymes cut at specific sequences when it comes into contact with a DNA sequence with a shape that matches a part of the enzyme this specific part of DNA is called the recognition site, it wraps around the DNA and causes a break in both strands of the DNA molecule. Each restriction enzyme recognises a different and specific recognition site in bedDNA or DNA sequence.
Restriction enzymes cut DNA bonds between 3′ OH of one nucleotide and 5′ phosphate of the next one at the specific restriction site. Adding methyl groups to certain bases at the recognition sites on the bacterial DNA blocks the restriction enzyme so that they can bind and protect the bacterial DNA from being cut by themselves.
To cut DNA, all restriction enzymes make two cuts, once through each sugar-phosphate spine (for example each strand) of the DNA twofold helix. These enzymes are found in microbes and archaea and give a safeguard component against attacking infections.
Note: In DNA cloning, specialists make numerous duplicates of a piece of DNA, like a quality. As a rule, cloning includes embedding the quality into a piece of round DNA called a plasmid, which can be duplicated in microorganisms.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

