Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

How do restriction enzymes cut at specific sequences?

Answer
VerifiedVerified
454.8k+ views
like imagedislike image
Hint: Restriction enzymes are DNA-cutting enzymes. Each enzyme recognizes one or a few target sequences and cuts DNA at or near those sequences. Many restriction enzymes make staggered cuts, producing ends with single-stranded DNA overhangs.

Complete answer:
 Restriction enzymes cut at specific sequences when it comes into contact with a DNA sequence with a shape that matches a part of the enzyme this specific part of DNA is called the recognition site, it wraps around the DNA and causes a break in both strands of the DNA molecule. Each restriction enzyme recognises a different and specific recognition site in bedDNA or DNA sequence.

Restriction enzymes cut DNA bonds between 3′ OH of one nucleotide and 5′ phosphate of the next one at the specific restriction site. Adding methyl groups to certain bases at the recognition sites on the bacterial DNA blocks the restriction enzyme so that they can bind and protect the bacterial DNA from being cut by themselves.

To cut DNA, all restriction enzymes make two cuts, once through each sugar-phosphate spine (for example each strand) of the DNA twofold helix. These enzymes are found in microbes and archaea and give a safeguard component against attacking infections.

Note: In DNA cloning, specialists make numerous duplicates of a piece of DNA, like a quality. As a rule, cloning includes embedding the quality into a piece of round DNA called a plasmid, which can be duplicated in microorganisms.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for CBSE students
PhysicsPhysics
ChemistryChemistry
MathsMaths
₹41,848 per year
Select and buy