
Resolve the fraction $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$ into partial fractions.
Answer
618.3k+ views
Hint: To convert $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$ into partial fractions, we will equate the fraction $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$ to $\dfrac{A}{\left( x-a \right)}+\dfrac{B}{\left( x+b \right)}$ where A and B are constants. Then we will solve the right side of this equation by taking LCM of the denominators of the two fractions. Then we will combine the coefficients of x and the constant terms. Then comparing these coefficients on both the sides of the equation, we will get two equations from which, we can find the value of A and B. From this, we can solve this question.
Complete step by step answer:
In the question, we are given a fraction $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$. We are required to convert this fraction into partial fractions.
Let us consider $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{A}{\left( x-a \right)}+\dfrac{B}{\left( x+b \right)}$. Here A and B are constants.
Let us combine the two fractions on the right side by taking LCM.
$\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{A\left( x+b \right)+B\left( x-a \right)}{\left( x-a \right)\left( x+b \right)}$ . . . . . . . . . . . . (1)
$\Rightarrow \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{Ax+Ab+Bx-Ba}{\left( x-a \right)\left( x+b \right)}$
Combining the coefficients of x and the constant terms, we get,
$\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{x\left( A+B \right)+\left( Ab-Ba \right)}{\left( x-a \right)\left( x+b \right)}$
$\Rightarrow mx+n=x\left( A+B \right)+\left( Ab-Ba \right)$
Comparing the coefficient of x on both the sides, we get,
A + B = m . . . . . . . . (2)
Comparing the constant terms on both the sides, we get,
Ab – Ba = n . . . . . . . . . . (3)
Substituting B = m – A from equation (2) in equation (3), we get,
Ab – (m – A) a = n
$\Rightarrow $ A (a + b) = ma + n
$\Rightarrow A=\dfrac{ma+n}{a+b}$
Since B = m – A, we get,
$\begin{align}
& B=m-\dfrac{ma+n}{a+b} \\
& \Rightarrow B=\dfrac{ma+mb-ma-n}{a+b} \\
& \Rightarrow B=\dfrac{mb-n}{a+b} \\
\end{align}$
So, we get,
$\begin{align}
& \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{\dfrac{ma+n}{a+b}}{\left( x-a \right)}+\dfrac{\dfrac{mb-n}{a+b}}{\left( x+b \right)} \\
& \Rightarrow \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{1}{\left( a+b \right)}\left( \dfrac{ma+n}{\left( x-a \right)}+\dfrac{mb-n}{\left( x+b \right)} \right) \\
\end{align}$
Hence, the answer is $\dfrac{1}{\left( a+b \right)}\left( \dfrac{ma+n}{\left( x-a \right)}+\dfrac{mb-n}{\left( x+b \right)} \right)$.
Note: To find the A and B, instead of comparing the coefficients, we can also substitute different values of x to find A and B. For example, if we substitute x = a in the equation (1), we get A (a+b) = am + n and hence, we get $A=\dfrac{ma+n}{a+b}$. Similarly, by substituting x = -b, we can find B.
Complete step by step answer:
In the question, we are given a fraction $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$. We are required to convert this fraction into partial fractions.
Let us consider $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{A}{\left( x-a \right)}+\dfrac{B}{\left( x+b \right)}$. Here A and B are constants.
Let us combine the two fractions on the right side by taking LCM.
$\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{A\left( x+b \right)+B\left( x-a \right)}{\left( x-a \right)\left( x+b \right)}$ . . . . . . . . . . . . (1)
$\Rightarrow \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{Ax+Ab+Bx-Ba}{\left( x-a \right)\left( x+b \right)}$
Combining the coefficients of x and the constant terms, we get,
$\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{x\left( A+B \right)+\left( Ab-Ba \right)}{\left( x-a \right)\left( x+b \right)}$
$\Rightarrow mx+n=x\left( A+B \right)+\left( Ab-Ba \right)$
Comparing the coefficient of x on both the sides, we get,
A + B = m . . . . . . . . (2)
Comparing the constant terms on both the sides, we get,
Ab – Ba = n . . . . . . . . . . (3)
Substituting B = m – A from equation (2) in equation (3), we get,
Ab – (m – A) a = n
$\Rightarrow $ A (a + b) = ma + n
$\Rightarrow A=\dfrac{ma+n}{a+b}$
Since B = m – A, we get,
$\begin{align}
& B=m-\dfrac{ma+n}{a+b} \\
& \Rightarrow B=\dfrac{ma+mb-ma-n}{a+b} \\
& \Rightarrow B=\dfrac{mb-n}{a+b} \\
\end{align}$
So, we get,
$\begin{align}
& \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{\dfrac{ma+n}{a+b}}{\left( x-a \right)}+\dfrac{\dfrac{mb-n}{a+b}}{\left( x+b \right)} \\
& \Rightarrow \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{1}{\left( a+b \right)}\left( \dfrac{ma+n}{\left( x-a \right)}+\dfrac{mb-n}{\left( x+b \right)} \right) \\
\end{align}$
Hence, the answer is $\dfrac{1}{\left( a+b \right)}\left( \dfrac{ma+n}{\left( x-a \right)}+\dfrac{mb-n}{\left( x+b \right)} \right)$.
Note: To find the A and B, instead of comparing the coefficients, we can also substitute different values of x to find A and B. For example, if we substitute x = a in the equation (1), we get A (a+b) = am + n and hence, we get $A=\dfrac{ma+n}{a+b}$. Similarly, by substituting x = -b, we can find B.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

