
Resolve the fraction $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$ into partial fractions.
Answer
521.1k+ views
Hint: To convert $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$ into partial fractions, we will equate the fraction $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$ to $\dfrac{A}{\left( x-a \right)}+\dfrac{B}{\left( x+b \right)}$ where A and B are constants. Then we will solve the right side of this equation by taking LCM of the denominators of the two fractions. Then we will combine the coefficients of x and the constant terms. Then comparing these coefficients on both the sides of the equation, we will get two equations from which, we can find the value of A and B. From this, we can solve this question.
Complete step by step answer:
In the question, we are given a fraction $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$. We are required to convert this fraction into partial fractions.
Let us consider $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{A}{\left( x-a \right)}+\dfrac{B}{\left( x+b \right)}$. Here A and B are constants.
Let us combine the two fractions on the right side by taking LCM.
$\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{A\left( x+b \right)+B\left( x-a \right)}{\left( x-a \right)\left( x+b \right)}$ . . . . . . . . . . . . (1)
$\Rightarrow \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{Ax+Ab+Bx-Ba}{\left( x-a \right)\left( x+b \right)}$
Combining the coefficients of x and the constant terms, we get,
$\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{x\left( A+B \right)+\left( Ab-Ba \right)}{\left( x-a \right)\left( x+b \right)}$
$\Rightarrow mx+n=x\left( A+B \right)+\left( Ab-Ba \right)$
Comparing the coefficient of x on both the sides, we get,
A + B = m . . . . . . . . (2)
Comparing the constant terms on both the sides, we get,
Ab – Ba = n . . . . . . . . . . (3)
Substituting B = m – A from equation (2) in equation (3), we get,
Ab – (m – A) a = n
$\Rightarrow $ A (a + b) = ma + n
$\Rightarrow A=\dfrac{ma+n}{a+b}$
Since B = m – A, we get,
$\begin{align}
& B=m-\dfrac{ma+n}{a+b} \\
& \Rightarrow B=\dfrac{ma+mb-ma-n}{a+b} \\
& \Rightarrow B=\dfrac{mb-n}{a+b} \\
\end{align}$
So, we get,
$\begin{align}
& \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{\dfrac{ma+n}{a+b}}{\left( x-a \right)}+\dfrac{\dfrac{mb-n}{a+b}}{\left( x+b \right)} \\
& \Rightarrow \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{1}{\left( a+b \right)}\left( \dfrac{ma+n}{\left( x-a \right)}+\dfrac{mb-n}{\left( x+b \right)} \right) \\
\end{align}$
Hence, the answer is $\dfrac{1}{\left( a+b \right)}\left( \dfrac{ma+n}{\left( x-a \right)}+\dfrac{mb-n}{\left( x+b \right)} \right)$.
Note: To find the A and B, instead of comparing the coefficients, we can also substitute different values of x to find A and B. For example, if we substitute x = a in the equation (1), we get A (a+b) = am + n and hence, we get $A=\dfrac{ma+n}{a+b}$. Similarly, by substituting x = -b, we can find B.
Complete step by step answer:
In the question, we are given a fraction $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$. We are required to convert this fraction into partial fractions.
Let us consider $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{A}{\left( x-a \right)}+\dfrac{B}{\left( x+b \right)}$. Here A and B are constants.
Let us combine the two fractions on the right side by taking LCM.
$\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{A\left( x+b \right)+B\left( x-a \right)}{\left( x-a \right)\left( x+b \right)}$ . . . . . . . . . . . . (1)
$\Rightarrow \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{Ax+Ab+Bx-Ba}{\left( x-a \right)\left( x+b \right)}$
Combining the coefficients of x and the constant terms, we get,
$\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{x\left( A+B \right)+\left( Ab-Ba \right)}{\left( x-a \right)\left( x+b \right)}$
$\Rightarrow mx+n=x\left( A+B \right)+\left( Ab-Ba \right)$
Comparing the coefficient of x on both the sides, we get,
A + B = m . . . . . . . . (2)
Comparing the constant terms on both the sides, we get,
Ab – Ba = n . . . . . . . . . . (3)
Substituting B = m – A from equation (2) in equation (3), we get,
Ab – (m – A) a = n
$\Rightarrow $ A (a + b) = ma + n
$\Rightarrow A=\dfrac{ma+n}{a+b}$
Since B = m – A, we get,
$\begin{align}
& B=m-\dfrac{ma+n}{a+b} \\
& \Rightarrow B=\dfrac{ma+mb-ma-n}{a+b} \\
& \Rightarrow B=\dfrac{mb-n}{a+b} \\
\end{align}$
So, we get,
$\begin{align}
& \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{\dfrac{ma+n}{a+b}}{\left( x-a \right)}+\dfrac{\dfrac{mb-n}{a+b}}{\left( x+b \right)} \\
& \Rightarrow \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{1}{\left( a+b \right)}\left( \dfrac{ma+n}{\left( x-a \right)}+\dfrac{mb-n}{\left( x+b \right)} \right) \\
\end{align}$
Hence, the answer is $\dfrac{1}{\left( a+b \right)}\left( \dfrac{ma+n}{\left( x-a \right)}+\dfrac{mb-n}{\left( x+b \right)} \right)$.
Note: To find the A and B, instead of comparing the coefficients, we can also substitute different values of x to find A and B. For example, if we substitute x = a in the equation (1), we get A (a+b) = am + n and hence, we get $A=\dfrac{ma+n}{a+b}$. Similarly, by substituting x = -b, we can find B.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
