
Resolve the fraction $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$ into partial fractions.
Answer
605.4k+ views
Hint: To convert $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$ into partial fractions, we will equate the fraction $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$ to $\dfrac{A}{\left( x-a \right)}+\dfrac{B}{\left( x+b \right)}$ where A and B are constants. Then we will solve the right side of this equation by taking LCM of the denominators of the two fractions. Then we will combine the coefficients of x and the constant terms. Then comparing these coefficients on both the sides of the equation, we will get two equations from which, we can find the value of A and B. From this, we can solve this question.
Complete step by step answer:
In the question, we are given a fraction $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$. We are required to convert this fraction into partial fractions.
Let us consider $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{A}{\left( x-a \right)}+\dfrac{B}{\left( x+b \right)}$. Here A and B are constants.
Let us combine the two fractions on the right side by taking LCM.
$\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{A\left( x+b \right)+B\left( x-a \right)}{\left( x-a \right)\left( x+b \right)}$ . . . . . . . . . . . . (1)
$\Rightarrow \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{Ax+Ab+Bx-Ba}{\left( x-a \right)\left( x+b \right)}$
Combining the coefficients of x and the constant terms, we get,
$\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{x\left( A+B \right)+\left( Ab-Ba \right)}{\left( x-a \right)\left( x+b \right)}$
$\Rightarrow mx+n=x\left( A+B \right)+\left( Ab-Ba \right)$
Comparing the coefficient of x on both the sides, we get,
A + B = m . . . . . . . . (2)
Comparing the constant terms on both the sides, we get,
Ab – Ba = n . . . . . . . . . . (3)
Substituting B = m – A from equation (2) in equation (3), we get,
Ab – (m – A) a = n
$\Rightarrow $ A (a + b) = ma + n
$\Rightarrow A=\dfrac{ma+n}{a+b}$
Since B = m – A, we get,
$\begin{align}
& B=m-\dfrac{ma+n}{a+b} \\
& \Rightarrow B=\dfrac{ma+mb-ma-n}{a+b} \\
& \Rightarrow B=\dfrac{mb-n}{a+b} \\
\end{align}$
So, we get,
$\begin{align}
& \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{\dfrac{ma+n}{a+b}}{\left( x-a \right)}+\dfrac{\dfrac{mb-n}{a+b}}{\left( x+b \right)} \\
& \Rightarrow \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{1}{\left( a+b \right)}\left( \dfrac{ma+n}{\left( x-a \right)}+\dfrac{mb-n}{\left( x+b \right)} \right) \\
\end{align}$
Hence, the answer is $\dfrac{1}{\left( a+b \right)}\left( \dfrac{ma+n}{\left( x-a \right)}+\dfrac{mb-n}{\left( x+b \right)} \right)$.
Note: To find the A and B, instead of comparing the coefficients, we can also substitute different values of x to find A and B. For example, if we substitute x = a in the equation (1), we get A (a+b) = am + n and hence, we get $A=\dfrac{ma+n}{a+b}$. Similarly, by substituting x = -b, we can find B.
Complete step by step answer:
In the question, we are given a fraction $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}$. We are required to convert this fraction into partial fractions.
Let us consider $\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{A}{\left( x-a \right)}+\dfrac{B}{\left( x+b \right)}$. Here A and B are constants.
Let us combine the two fractions on the right side by taking LCM.
$\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{A\left( x+b \right)+B\left( x-a \right)}{\left( x-a \right)\left( x+b \right)}$ . . . . . . . . . . . . (1)
$\Rightarrow \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{Ax+Ab+Bx-Ba}{\left( x-a \right)\left( x+b \right)}$
Combining the coefficients of x and the constant terms, we get,
$\dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{x\left( A+B \right)+\left( Ab-Ba \right)}{\left( x-a \right)\left( x+b \right)}$
$\Rightarrow mx+n=x\left( A+B \right)+\left( Ab-Ba \right)$
Comparing the coefficient of x on both the sides, we get,
A + B = m . . . . . . . . (2)
Comparing the constant terms on both the sides, we get,
Ab – Ba = n . . . . . . . . . . (3)
Substituting B = m – A from equation (2) in equation (3), we get,
Ab – (m – A) a = n
$\Rightarrow $ A (a + b) = ma + n
$\Rightarrow A=\dfrac{ma+n}{a+b}$
Since B = m – A, we get,
$\begin{align}
& B=m-\dfrac{ma+n}{a+b} \\
& \Rightarrow B=\dfrac{ma+mb-ma-n}{a+b} \\
& \Rightarrow B=\dfrac{mb-n}{a+b} \\
\end{align}$
So, we get,
$\begin{align}
& \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{\dfrac{ma+n}{a+b}}{\left( x-a \right)}+\dfrac{\dfrac{mb-n}{a+b}}{\left( x+b \right)} \\
& \Rightarrow \dfrac{mx+n}{\left( x-a \right)\left( x+b \right)}=\dfrac{1}{\left( a+b \right)}\left( \dfrac{ma+n}{\left( x-a \right)}+\dfrac{mb-n}{\left( x+b \right)} \right) \\
\end{align}$
Hence, the answer is $\dfrac{1}{\left( a+b \right)}\left( \dfrac{ma+n}{\left( x-a \right)}+\dfrac{mb-n}{\left( x+b \right)} \right)$.
Note: To find the A and B, instead of comparing the coefficients, we can also substitute different values of x to find A and B. For example, if we substitute x = a in the equation (1), we get A (a+b) = am + n and hence, we get $A=\dfrac{ma+n}{a+b}$. Similarly, by substituting x = -b, we can find B.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

