
What is the remainder when,
${{10}^{10}}\cdot \left( {{10}^{10}}+1 \right)\left( {{10}^{10}}+2 \right)$ is divided by $6$ _____.
(a) 2
(b) 4
(c) 0
(d) 6
Answer
619.2k+ views
Hint: For finding the remainder just consider the base of the number leaving its exponent part and evaluate the remainder. After that proceed to identifying a recurring pattern in the remainder to obtain the final result.
Complete step-by-step answer:
First of all, we would expand the expression given in the question:
$\begin{align}
& {{10}^{10}}\cdot \left( {{10}^{10}}+1 \right)\left( {{10}^{10}}+2 \right)=\left( {{10}^{20}}+{{10}^{10}} \right)\left( {{10}^{10}}+2 \right) \\
& ={{10}^{20+10}}+2\cdot {{10}^{20}}+{{10}^{10+10}}+2\cdot {{10}^{10}} \\
& ={{10}^{30}}+3\times {{10}^{20}}+2\times {{10}^{10}} \\
\end{align}$
Now we would individually calculate the remainder when divided by 6 for the above three terms and then finally add all the evaluated remainder to obtain the final answer.
Considering ${{10}^{30}}$ and dividing it by 6 to obtain the remainder,
$\begin{align}
& {{R}_{1}}=\dfrac{{{10}^{30}}}{6} \\
& {{R}_{1}}=\dfrac{{{10}^{29}}\times 10}{6} \\
& {{R}_{1}}={{10}^{29}}\cdot \dfrac{10}{6} \\
& \therefore {{R}_{1}}=4 \\
\end{align}$
Hence, from the above formulation we obtained that when any exponent of 10 is divided by 6 we get 4 as remainder.
So, for a number having 10 as base and any exponent n we can establish a recurring relation as,
$R\left[ \dfrac{{{10}^{n}}}{6} \right]=4$
Now proceeding to the next term, we get
${{R}_{2}}=\dfrac{3\times {{10}^{20}}}{6}$
Operating in the similar manner as we did for the previous term, we get
\[\begin{align}
& {{R}_{2}}=\dfrac{3\times {{10}^{20}}}{6} \\
& {{R}_{2}}=\dfrac{{{10}^{19}}\cdot \left( 3\times 10 \right)}{6} \\
& {{R}_{2}}={{10}^{19}}\cdot \dfrac{30}{6} \\
& \therefore {{R}_{2}}=0 \\
\end{align}\]
At last, the remainder for last term would be
$\begin{align}
& {{R}_{3}}=\dfrac{2\times {{10}^{10}}}{6} \\
& {{R}_{3}}=\dfrac{{{10}^{9}}\left( 2\times 10 \right)}{6} \\
& {{R}_{3}}={{10}^{9}}\cdot \dfrac{20}{6} \\
& \therefore {{R}_{3}}=2 \\
\end{align}$
Therefore, the sum total of all the reminders would give us the desired remainder.
$\begin{align}
& S={{R}_{1}}+{{R}_{2}}+{{R}_{3}} \\
& S=4+0+2 \\
& S=6 \\
\end{align}$
So, the final remainder is obtained by dividing the sum of remainder S with 6.
$\begin{align}
& R=\dfrac{S}{6} \\
& R=\dfrac{6}{6} \\
& \therefore R=0 \\
\end{align}$
Hence, the correct option is (c).
Note: The key step helpful in solving such questions is the correct formation of fraction through which remainder can be evaluated easily. A common mistake in this problem include the expansion of expression because ${{a}^{m}}\times {{a}^{m}}={{a}^{m+m}}={{a}^{2m}}$ which is wrongly evaluated by some students as ${{a}^{m}}\times {{a}^{m}}={{a}^{{{m}^{m}}}}={{a}^{{{m}^{2}}}}$.
Complete step-by-step answer:
First of all, we would expand the expression given in the question:
$\begin{align}
& {{10}^{10}}\cdot \left( {{10}^{10}}+1 \right)\left( {{10}^{10}}+2 \right)=\left( {{10}^{20}}+{{10}^{10}} \right)\left( {{10}^{10}}+2 \right) \\
& ={{10}^{20+10}}+2\cdot {{10}^{20}}+{{10}^{10+10}}+2\cdot {{10}^{10}} \\
& ={{10}^{30}}+3\times {{10}^{20}}+2\times {{10}^{10}} \\
\end{align}$
Now we would individually calculate the remainder when divided by 6 for the above three terms and then finally add all the evaluated remainder to obtain the final answer.
Considering ${{10}^{30}}$ and dividing it by 6 to obtain the remainder,
$\begin{align}
& {{R}_{1}}=\dfrac{{{10}^{30}}}{6} \\
& {{R}_{1}}=\dfrac{{{10}^{29}}\times 10}{6} \\
& {{R}_{1}}={{10}^{29}}\cdot \dfrac{10}{6} \\
& \therefore {{R}_{1}}=4 \\
\end{align}$
Hence, from the above formulation we obtained that when any exponent of 10 is divided by 6 we get 4 as remainder.
So, for a number having 10 as base and any exponent n we can establish a recurring relation as,
$R\left[ \dfrac{{{10}^{n}}}{6} \right]=4$
Now proceeding to the next term, we get
${{R}_{2}}=\dfrac{3\times {{10}^{20}}}{6}$
Operating in the similar manner as we did for the previous term, we get
\[\begin{align}
& {{R}_{2}}=\dfrac{3\times {{10}^{20}}}{6} \\
& {{R}_{2}}=\dfrac{{{10}^{19}}\cdot \left( 3\times 10 \right)}{6} \\
& {{R}_{2}}={{10}^{19}}\cdot \dfrac{30}{6} \\
& \therefore {{R}_{2}}=0 \\
\end{align}\]
At last, the remainder for last term would be
$\begin{align}
& {{R}_{3}}=\dfrac{2\times {{10}^{10}}}{6} \\
& {{R}_{3}}=\dfrac{{{10}^{9}}\left( 2\times 10 \right)}{6} \\
& {{R}_{3}}={{10}^{9}}\cdot \dfrac{20}{6} \\
& \therefore {{R}_{3}}=2 \\
\end{align}$
Therefore, the sum total of all the reminders would give us the desired remainder.
$\begin{align}
& S={{R}_{1}}+{{R}_{2}}+{{R}_{3}} \\
& S=4+0+2 \\
& S=6 \\
\end{align}$
So, the final remainder is obtained by dividing the sum of remainder S with 6.
$\begin{align}
& R=\dfrac{S}{6} \\
& R=\dfrac{6}{6} \\
& \therefore R=0 \\
\end{align}$
Hence, the correct option is (c).
Note: The key step helpful in solving such questions is the correct formation of fraction through which remainder can be evaluated easily. A common mistake in this problem include the expansion of expression because ${{a}^{m}}\times {{a}^{m}}={{a}^{m+m}}={{a}^{2m}}$ which is wrongly evaluated by some students as ${{a}^{m}}\times {{a}^{m}}={{a}^{{{m}^{m}}}}={{a}^{{{m}^{2}}}}$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Give 10 examples for herbs , shrubs , climbers , creepers

How many millions make a billion class 6 maths CBSE

What is the capital city of Australia? A) Sydney B) Melbourne C) Brisbane D) Canberra

What is the shape of Earth A Circle B Square C Sphere class 6 social science CBSE

The planet nearest to earth is A Mercury B Venus C class 6 social science CBSE

Four bells toll together at 900am They toll after 7811 class 6 maths CBSE


