Relation between pressure ( $ P $ ) and energy density ( $ E $ ) of an ideal gas is:
(A) $ P = 2/3E $
(B) $ P = 3/2E $
(C) $ P = 3/5E $
(D) $ P = E $
Answer
Verified
450.6k+ views
Hint: We need to use the relation of ideal gas $ PV = nRT $ to generate the relation between pressure and the energy density of an ideal gas. Energy density is the amount of energy stored in a given system or region of space per unit volume.
Complete Step by Step Solution
Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other. Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behaviour of real gases.
We know for one mole of ideal gas
$ PV = RT $ where $ P $ is the pressure and $ V $ is the volume of the ideal gas, $ R $ is the universal gas constant and $ T $ is the temperature.
The internal energy of an ideal gas $ {E_{\operatorname{int} }} = \dfrac{3}{2}PV $ , which can also be expressed as,
From the equations stated above, we get,
$ \dfrac{{{E_{\operatorname{int} }}}}{V} = \dfrac{3}{2}P $ .
Thus, the energy density is given by,
$ E = \dfrac{3}{2}P $
$ \Rightarrow P = \dfrac{2}{3}E $
This can also be solved using an alternative method.
Kinetic energy of the molecules is given by, $ \dfrac{1}{2}M{V_{rms}}^2 $ where $ M $ is the molar mass and $ {V_{rms}} $ is the root mean square velocity.
$ P = \dfrac{2}{3}E $ .
The root mean square velocity is the square root of the average of the square of the velocity. As such, it has units of velocity. The reason we use the rms velocity instead of the average is that for a typical gas sample the net velocity is zero since the particles are moving in all directions.
$ {V_{rms}} = \sqrt {\dfrac{{3KT}}{m}} $ where $ k = \dfrac{R}{{{N_A}}} $ then, $ \dfrac{k}{m} = \dfrac{R}{M} $ .
$ {V_{rms}} = \sqrt {\dfrac{{3KT}}{m}} = \sqrt {\dfrac{{3RT}}{M}} $ .
Kinetic energy $ KE = \dfrac{3}{2}RT = \dfrac{3}{2}PV $ since, $ PV = RT $ .
$ \dfrac{{KE}}{V} = \dfrac{3}{2}P $ .
Thus energy density, $ E = \dfrac{3}{2}P $ .
Hence, the correct answer is Option B.
Note
There are two ways to solve this question first by using ideal gas and internal energy relation second by using ideal gas and kinetic energy relation.
Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container. Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.
Complete Step by Step Solution
Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other. Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behaviour of real gases.
We know for one mole of ideal gas
$ PV = RT $ where $ P $ is the pressure and $ V $ is the volume of the ideal gas, $ R $ is the universal gas constant and $ T $ is the temperature.
The internal energy of an ideal gas $ {E_{\operatorname{int} }} = \dfrac{3}{2}PV $ , which can also be expressed as,
From the equations stated above, we get,
$ \dfrac{{{E_{\operatorname{int} }}}}{V} = \dfrac{3}{2}P $ .
Thus, the energy density is given by,
$ E = \dfrac{3}{2}P $
$ \Rightarrow P = \dfrac{2}{3}E $
This can also be solved using an alternative method.
Kinetic energy of the molecules is given by, $ \dfrac{1}{2}M{V_{rms}}^2 $ where $ M $ is the molar mass and $ {V_{rms}} $ is the root mean square velocity.
$ P = \dfrac{2}{3}E $ .
The root mean square velocity is the square root of the average of the square of the velocity. As such, it has units of velocity. The reason we use the rms velocity instead of the average is that for a typical gas sample the net velocity is zero since the particles are moving in all directions.
$ {V_{rms}} = \sqrt {\dfrac{{3KT}}{m}} $ where $ k = \dfrac{R}{{{N_A}}} $ then, $ \dfrac{k}{m} = \dfrac{R}{M} $ .
$ {V_{rms}} = \sqrt {\dfrac{{3KT}}{m}} = \sqrt {\dfrac{{3RT}}{M}} $ .
Kinetic energy $ KE = \dfrac{3}{2}RT = \dfrac{3}{2}PV $ since, $ PV = RT $ .
$ \dfrac{{KE}}{V} = \dfrac{3}{2}P $ .
Thus energy density, $ E = \dfrac{3}{2}P $ .
Hence, the correct answer is Option B.
Note
There are two ways to solve this question first by using ideal gas and internal energy relation second by using ideal gas and kinetic energy relation.
Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container. Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE