
Ramesh buys a half dozen pencils, two erasers, and two sharpeners in a shop and pays 14 rupees. Suresh buys 15 pencils, three erasers, 5 erasers, and 5 sharpeners and pays 34 rupees where his friend who accompanied them buys 1 pencil, 1 eraser, and 1 sharpener and pays 3 rupees. Find the price of a pencil, sharpener, and eraser using matrices. \[\]
Answer
581.7k+ views
Hint: We assume the price of one pencil as $x$, the price of one eraser as $y$, and the price of one sharpener as $z$. We use the given information and form a $3\times 3$ linear system of equations $AX=B$ in matrices. We find the solution $X={{A}^{-1}}B.$\[\]
Complete step-by-step solution
We know the $3\times 3$ linear system of equations with three unknowns $x,y,z$ represented in matrix form as
\[\begin{align}
& \left[ \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
{{d}_{1}} \\
{{d}_{2}} \\
{{d}_{3}} \\
\end{matrix} \right] \\
& \Rightarrow AX=B \\
\end{align}\]
The solution of the above system of equation is given by
\[X={{A}^{-1}}B=\left( \dfrac{1}{\det \left( A \right)}\text{adj}A \right)B\]
Let us assume the price of one pencil as$x$, the price of one eraser as $y$ and the price of one sharpener as $y$. We are given the question that Rajesh buys a half dozen pencils, 2 erasers and 2 sharpeners in a shop and pays 14 rupees. So we have
\[6x+2y+2z=14...(1)\]
Suresh buys 15 pencils, three erasers, 5 erasers and 5 sharpeners and pays 34 rupees. So we have
\[15x+5y+3z=34....\left( 2 \right)\]
The accompanying friend buys 1 pencil, 1 eraser and 1 sharpener and pays 3 rupees. So we have,
\[x+y+z=3......\left( 3 \right)\]
We write equation (1), (2), (3) in matrix from as,
\[\begin{align}
& \left[ \begin{matrix}
6 & 2 & 2 \\
15 & 5 & 3 \\
1 & 1 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
14 \\
34 \\
3 \\
\end{matrix} \right] \\
& \Rightarrow AX=B \\
\end{align}\]
We know that the adjoint of the $A$ is the transpose of the cofactor matrix of $A$. The cofactor matrix is matrix where each element ${{a}_{ij}}$ is equal to the determinant value of the matrix formed by rows and columns excluding${{a}_{ij}}$multiplied by ${{\left( -1 \right)}^{i+j}}$for example co-factor of ${{a}_{11}}=6$ is the determinant excluding row-1 first column -1 that is
\[C\left( 6 \right)={{\left( -1 \right)}^{11}}\left| \begin{matrix}
5 & 3 \\
1 & 1 \\
\end{matrix} \right|=1\left( 5\times 1-3\times 1 \right)=2\]
Summarily we find the cofactors of the elements in the first row as
\[\begin{align}
& C\left( {{a}_{12}}=2 \right)={{\left( -1 \right)}^{1+2}}\left| \begin{matrix}
15 & 3 \\
1 & 1 \\
\end{matrix} \right|=-1\left( 15-3 \right)=-12 \\
& C\left( {{a}_{13}}=2 \right)={{\left( -1 \right)}^{1+3}}\left| \begin{matrix}
15 & 5 \\
1 & 1 \\
\end{matrix} \right|=1\left( 15-5 \right)=10 \\
\end{align}\]
The cofactors of the elements in the second row are
\[\begin{align}
& C\left( {{a}_{21}}=15 \right)={{\left( -1 \right)}^{2+1}}\left| \begin{matrix}
2 & 2 \\
1 & 1 \\
\end{matrix} \right|=-1\left( 2-2 \right)=0 \\
& C\left( {{a}_{22}}=5 \right)={{\left( -1 \right)}^{2+2}}\left| \begin{matrix}
6 & 2 \\
1 & 1 \\
\end{matrix} \right|=1\left( 6-2 \right)=4 \\
& C\left( {{a}_{23}}=3 \right)={{\left( -1 \right)}^{2+3}}\left| \begin{matrix}
6 & 2 \\
1 & 1 \\
\end{matrix} \right|=-1\left( 6-2 \right)=-4 \\
\end{align}\]
The cofactors of the elements in the third row are
\[\begin{align}
& C\left( {{a}_{31}}=1 \right)={{\left( -1 \right)}^{3+1}}\left| \begin{matrix}
2 & 2 \\
5 & 3 \\
\end{matrix} \right|=1\left( 6-10 \right)=-4 \\
& C\left( {{a}_{32}}=1 \right)={{\left( -1 \right)}^{3+2}}\left| \begin{matrix}
6 & 2 \\
15 & 3 \\
\end{matrix} \right|=-1\left( 18-30 \right)=12 \\
& C\left( {{a}_{33}}=1 \right)={{\left( -1 \right)}^{3+3}}\left| \begin{matrix}
6 & 2 \\
15 & 5 \\
\end{matrix} \right|=1\left( 30-30 \right)=0 \\
\end{align}\]
The cofactor matrix of $A$ is
\[\text{coeff }\left( A \right)=\left[ \begin{matrix}
C\left( 6 \right) & C\left( 2 \right) & C\left( 2 \right) \\
C\left( 15 \right) & C\left( 5 \right) & C\left( 3 \right) \\
C\left( 1 \right) & C\left( 1 \right) & C\left( 1 \right) \\
\end{matrix} \right]=\left[ \begin{matrix}
2 & -12 & 10 \\
0 & 4 & -4 \\
-4 & 12 & 0 \\
\end{matrix} \right]\]
So the adjoint matrix of $A$ is
\[\text{adj}.A={{\left( \text{coeff}.A \right)}^{T}}=\left[ \begin{matrix}
2 & 0 & -4 \\
-12 & 4 & 12 \\
10 & -4 & 0 \\
\end{matrix} \right]\]
We find the determinant value of matrix $A$ by expanding in third column. We have
\[\det \left( A \right)=\left| \begin{matrix}
6 & 2 & 2 \\
15 & 5 & 3 \\
1 & 1 & 1 \\
\end{matrix} \right|=1\left( 6-10 \right)-1\left( 18-30 \right)+1\left( 30-30 \right)=8\]
So the solutions are
\[X={{A}^{-1}}B=\left( \dfrac{adj.A}{\det \left( A \right)} \right)B=\dfrac{1}{8}\left[ \begin{matrix}
2 & 0 & -4 \\
-12 & 4 & 12 \\
10 & -4 & 0 \\
\end{matrix} \right]\left[ \begin{matrix}
14 \\
34 \\
3 \\
\end{matrix} \right]=\dfrac{1}{8}\left[ \begin{matrix}
16 \\
4 \\
4 \\
\end{matrix} \right]=\left[ \begin{matrix}
2 \\
0.5 \\
0.5 \\
\end{matrix} \right]\]
So the price of one pencil is 2 rupees one eraser is 0.5 and one sharpeners is 0.5 rupees.\[\]
Note: We can alternatively solve the problem by using Gauss-Jordan elimination of the augmented matrix$\left( A,B \right)$. We can use the same elimination to find inverse in $\left( A,{{A}^{-1}} \right)$.We note that we cannot find a unique solution when$\det \left( A \right)=0$, infinite solution if $\det \left( A \right)=0,\text{adj}A\cdot B=0$ and no solution if $\det \left( A \right)=0,\text{adj}A\cdot B\ne 0$/
Complete step-by-step solution
We know the $3\times 3$ linear system of equations with three unknowns $x,y,z$ represented in matrix form as
\[\begin{align}
& \left[ \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
{{d}_{1}} \\
{{d}_{2}} \\
{{d}_{3}} \\
\end{matrix} \right] \\
& \Rightarrow AX=B \\
\end{align}\]
The solution of the above system of equation is given by
\[X={{A}^{-1}}B=\left( \dfrac{1}{\det \left( A \right)}\text{adj}A \right)B\]
Let us assume the price of one pencil as$x$, the price of one eraser as $y$ and the price of one sharpener as $y$. We are given the question that Rajesh buys a half dozen pencils, 2 erasers and 2 sharpeners in a shop and pays 14 rupees. So we have
\[6x+2y+2z=14...(1)\]
Suresh buys 15 pencils, three erasers, 5 erasers and 5 sharpeners and pays 34 rupees. So we have
\[15x+5y+3z=34....\left( 2 \right)\]
The accompanying friend buys 1 pencil, 1 eraser and 1 sharpener and pays 3 rupees. So we have,
\[x+y+z=3......\left( 3 \right)\]
We write equation (1), (2), (3) in matrix from as,
\[\begin{align}
& \left[ \begin{matrix}
6 & 2 & 2 \\
15 & 5 & 3 \\
1 & 1 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
14 \\
34 \\
3 \\
\end{matrix} \right] \\
& \Rightarrow AX=B \\
\end{align}\]
We know that the adjoint of the $A$ is the transpose of the cofactor matrix of $A$. The cofactor matrix is matrix where each element ${{a}_{ij}}$ is equal to the determinant value of the matrix formed by rows and columns excluding${{a}_{ij}}$multiplied by ${{\left( -1 \right)}^{i+j}}$for example co-factor of ${{a}_{11}}=6$ is the determinant excluding row-1 first column -1 that is
\[C\left( 6 \right)={{\left( -1 \right)}^{11}}\left| \begin{matrix}
5 & 3 \\
1 & 1 \\
\end{matrix} \right|=1\left( 5\times 1-3\times 1 \right)=2\]
Summarily we find the cofactors of the elements in the first row as
\[\begin{align}
& C\left( {{a}_{12}}=2 \right)={{\left( -1 \right)}^{1+2}}\left| \begin{matrix}
15 & 3 \\
1 & 1 \\
\end{matrix} \right|=-1\left( 15-3 \right)=-12 \\
& C\left( {{a}_{13}}=2 \right)={{\left( -1 \right)}^{1+3}}\left| \begin{matrix}
15 & 5 \\
1 & 1 \\
\end{matrix} \right|=1\left( 15-5 \right)=10 \\
\end{align}\]
The cofactors of the elements in the second row are
\[\begin{align}
& C\left( {{a}_{21}}=15 \right)={{\left( -1 \right)}^{2+1}}\left| \begin{matrix}
2 & 2 \\
1 & 1 \\
\end{matrix} \right|=-1\left( 2-2 \right)=0 \\
& C\left( {{a}_{22}}=5 \right)={{\left( -1 \right)}^{2+2}}\left| \begin{matrix}
6 & 2 \\
1 & 1 \\
\end{matrix} \right|=1\left( 6-2 \right)=4 \\
& C\left( {{a}_{23}}=3 \right)={{\left( -1 \right)}^{2+3}}\left| \begin{matrix}
6 & 2 \\
1 & 1 \\
\end{matrix} \right|=-1\left( 6-2 \right)=-4 \\
\end{align}\]
The cofactors of the elements in the third row are
\[\begin{align}
& C\left( {{a}_{31}}=1 \right)={{\left( -1 \right)}^{3+1}}\left| \begin{matrix}
2 & 2 \\
5 & 3 \\
\end{matrix} \right|=1\left( 6-10 \right)=-4 \\
& C\left( {{a}_{32}}=1 \right)={{\left( -1 \right)}^{3+2}}\left| \begin{matrix}
6 & 2 \\
15 & 3 \\
\end{matrix} \right|=-1\left( 18-30 \right)=12 \\
& C\left( {{a}_{33}}=1 \right)={{\left( -1 \right)}^{3+3}}\left| \begin{matrix}
6 & 2 \\
15 & 5 \\
\end{matrix} \right|=1\left( 30-30 \right)=0 \\
\end{align}\]
The cofactor matrix of $A$ is
\[\text{coeff }\left( A \right)=\left[ \begin{matrix}
C\left( 6 \right) & C\left( 2 \right) & C\left( 2 \right) \\
C\left( 15 \right) & C\left( 5 \right) & C\left( 3 \right) \\
C\left( 1 \right) & C\left( 1 \right) & C\left( 1 \right) \\
\end{matrix} \right]=\left[ \begin{matrix}
2 & -12 & 10 \\
0 & 4 & -4 \\
-4 & 12 & 0 \\
\end{matrix} \right]\]
So the adjoint matrix of $A$ is
\[\text{adj}.A={{\left( \text{coeff}.A \right)}^{T}}=\left[ \begin{matrix}
2 & 0 & -4 \\
-12 & 4 & 12 \\
10 & -4 & 0 \\
\end{matrix} \right]\]
We find the determinant value of matrix $A$ by expanding in third column. We have
\[\det \left( A \right)=\left| \begin{matrix}
6 & 2 & 2 \\
15 & 5 & 3 \\
1 & 1 & 1 \\
\end{matrix} \right|=1\left( 6-10 \right)-1\left( 18-30 \right)+1\left( 30-30 \right)=8\]
So the solutions are
\[X={{A}^{-1}}B=\left( \dfrac{adj.A}{\det \left( A \right)} \right)B=\dfrac{1}{8}\left[ \begin{matrix}
2 & 0 & -4 \\
-12 & 4 & 12 \\
10 & -4 & 0 \\
\end{matrix} \right]\left[ \begin{matrix}
14 \\
34 \\
3 \\
\end{matrix} \right]=\dfrac{1}{8}\left[ \begin{matrix}
16 \\
4 \\
4 \\
\end{matrix} \right]=\left[ \begin{matrix}
2 \\
0.5 \\
0.5 \\
\end{matrix} \right]\]
So the price of one pencil is 2 rupees one eraser is 0.5 and one sharpeners is 0.5 rupees.\[\]
Note: We can alternatively solve the problem by using Gauss-Jordan elimination of the augmented matrix$\left( A,B \right)$. We can use the same elimination to find inverse in $\left( A,{{A}^{-1}} \right)$.We note that we cannot find a unique solution when$\det \left( A \right)=0$, infinite solution if $\det \left( A \right)=0,\text{adj}A\cdot B=0$ and no solution if $\det \left( A \right)=0,\text{adj}A\cdot B\ne 0$/
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

