
Prove the result of the following expression, $2{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}=\dfrac{\pi }{4}$.
Answer
606.9k+ views
Hint:To prove the result of the given expression, we should know a few inverse trigonometric formulas like, $2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$ and ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$. We also have to remember that $\tan \dfrac{\pi }{4}=1$. We can prove the given equality by using these formulas and should be very careful while doing the calculations.
Complete step-by-step answer:
In this question, we have been asked to prove the equality, $2{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}=\dfrac{\pi }{4}$. So, to prove this equality, we will first consider the left hand side of the equation. So, we can write it as,
$LHS=2{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}$
Now, we know that $2{{\tan }^{-1}}x$ can be expressed as ${{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$. Hence, applying it to the expression, we get the LHS as,
$LHS={{\tan }^{-1}}\left[ \dfrac{2\left( \dfrac{3}{4} \right)}{1-{{\left( \dfrac{3}{4} \right)}^{2}}} \right]-{{\tan }^{-1}}\dfrac{17}{31}$
Now, we will simplify it further and get the LHS as,
$\begin{align}
& LHS={{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{3}{2} \right)}{1-\left( \dfrac{9}{16} \right)} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{3}{2} \right)}{\dfrac{\left( 16-9 \right)}{16}} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{3}{2} \right)}{\left( \dfrac{7}{16} \right)} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\
\end{align}$
And we can further simplify it as,
$\begin{align}
& LHS={{\tan }^{-1}}\left[ \dfrac{3\times 16}{2\times 7} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{24}{7} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\
\end{align}$
Now, we know that ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$, so for $a=\dfrac{24}{7}$ and $b=\dfrac{17}{31}$, we can apply this and write the above expression as,
$LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{24}{7}-\dfrac{17}{31}}{1+\dfrac{24}{7}\times \dfrac{17}{31}} \right]$
Now, we will take the LCM of both the terms of the numerator and the denominator. So, we will get the LHS as follows,
$LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{24\times 31-17\times 7}{7\times 31}}{\dfrac{7\times 31+24\times 17}{7\times 31}} \right]$
We can further write it as,
$\begin{align}
& LHS={{\tan }^{-1}}\left[ \dfrac{\left( 24\times 31-17\times 7 \right)\left( 7\times 31 \right)}{\left( 7\times 31+24\times 17 \right)\left( 7\times 31 \right)} \right] \\
& \Rightarrow LHS={{\tan }^{-1}}\left( \dfrac{744-119}{217+408} \right) \\
& \Rightarrow LHS={{\tan }^{-1}}\left( \dfrac{625}{625} \right) \\
\end{align}$
And we know that the common terms of the numerator and the denominator gets cancelled, so we can write the above as,
$LHS={{\tan }^{-1}}1$
Now, we know that $\tan \dfrac{\pi }{4}=1$. So, we can write $\dfrac{\pi }{4}={{\tan }^{-1}}1$. So, applying that, we can write the LHS as, $LHS=\dfrac{\pi }{4}$, which implies that it is equal to the right hand side or the RHS, given in the question. So, LHS = RHS.
Hence, we have proved the given expression.
Note: While solving the question, there are high possibilities that we end up with $LHS\ne RHS$, which would mean that there is a calculation mistake somewhere and we need to check the calculations again. Also, we must remember that, $2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$ and ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$ to solve this question easily.
Complete step-by-step answer:
In this question, we have been asked to prove the equality, $2{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}=\dfrac{\pi }{4}$. So, to prove this equality, we will first consider the left hand side of the equation. So, we can write it as,
$LHS=2{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}$
Now, we know that $2{{\tan }^{-1}}x$ can be expressed as ${{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$. Hence, applying it to the expression, we get the LHS as,
$LHS={{\tan }^{-1}}\left[ \dfrac{2\left( \dfrac{3}{4} \right)}{1-{{\left( \dfrac{3}{4} \right)}^{2}}} \right]-{{\tan }^{-1}}\dfrac{17}{31}$
Now, we will simplify it further and get the LHS as,
$\begin{align}
& LHS={{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{3}{2} \right)}{1-\left( \dfrac{9}{16} \right)} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{3}{2} \right)}{\dfrac{\left( 16-9 \right)}{16}} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{3}{2} \right)}{\left( \dfrac{7}{16} \right)} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\
\end{align}$
And we can further simplify it as,
$\begin{align}
& LHS={{\tan }^{-1}}\left[ \dfrac{3\times 16}{2\times 7} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{24}{7} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\
\end{align}$
Now, we know that ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$, so for $a=\dfrac{24}{7}$ and $b=\dfrac{17}{31}$, we can apply this and write the above expression as,
$LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{24}{7}-\dfrac{17}{31}}{1+\dfrac{24}{7}\times \dfrac{17}{31}} \right]$
Now, we will take the LCM of both the terms of the numerator and the denominator. So, we will get the LHS as follows,
$LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{24\times 31-17\times 7}{7\times 31}}{\dfrac{7\times 31+24\times 17}{7\times 31}} \right]$
We can further write it as,
$\begin{align}
& LHS={{\tan }^{-1}}\left[ \dfrac{\left( 24\times 31-17\times 7 \right)\left( 7\times 31 \right)}{\left( 7\times 31+24\times 17 \right)\left( 7\times 31 \right)} \right] \\
& \Rightarrow LHS={{\tan }^{-1}}\left( \dfrac{744-119}{217+408} \right) \\
& \Rightarrow LHS={{\tan }^{-1}}\left( \dfrac{625}{625} \right) \\
\end{align}$
And we know that the common terms of the numerator and the denominator gets cancelled, so we can write the above as,
$LHS={{\tan }^{-1}}1$
Now, we know that $\tan \dfrac{\pi }{4}=1$. So, we can write $\dfrac{\pi }{4}={{\tan }^{-1}}1$. So, applying that, we can write the LHS as, $LHS=\dfrac{\pi }{4}$, which implies that it is equal to the right hand side or the RHS, given in the question. So, LHS = RHS.
Hence, we have proved the given expression.
Note: While solving the question, there are high possibilities that we end up with $LHS\ne RHS$, which would mean that there is a calculation mistake somewhere and we need to check the calculations again. Also, we must remember that, $2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$ and ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$ to solve this question easily.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

