
Prove the given trigonometric identity. The identity is:\[sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ }-\text{ }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }=\text{ }0\]
Answer
601.5k+ views
Hint: Apply the trigonometric identity \[\cos \left( s+t \right)=\cos \left( s \right)\cos \left( t \right)-\sin \left( s \right)\sin \left( t \right)\]. The sign is reversed and then the given trigonometric expression in the LHS will fit almost in the above expansion form. Then from that we can prove that it is zero. Also, use \[cos\text{ 9}{{\text{0}}^{\circ }}=0\] .
Complete step-by-step answer:
It is to prove that \[sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ - }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }=\text{ }0\]. So here this expression in the left-hand side is similar to the identity \[\cos \left( s \right)\cos \left( t \right)-\sin \left( s \right)\sin \left( t \right)\]. Also, the expansion formula for the above is \[\cos \left( s+t \right)=\cos \left( s \right)\cos \left( t \right)-\sin \left( s \right)\sin \left( t \right)\]. Now here the expression in the left-hand side is \[sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ }-\text{ }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }\]. So, now reversing the sign, we have:
\[\text{-( }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }-sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }})\]. Next comparing this expression with \[\cos \left( s \right)\cos \left( t \right)-\sin \left( s \right)\sin \left( t \right)\], we have following:
\[\Rightarrow -\text{( }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ - }sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }})=-cos({{35}^{\circ }}+{{55}^{\circ }})\]
This is because \[s={{35}^{\circ }}\,\text{and}\,t={{55}^{\circ }}\] .
So we will simplify the LHS of the given identity \[sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ }-\text{ }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }=\text{ }0\], as follows:
\[\begin{align}
& \Rightarrow LHS=-\text{( }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ - }sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}) \\
& \Rightarrow LHS=-cos({{35}^{\circ }}+{{55}^{\circ }}) \\
& \Rightarrow LHS=-cos({{90}^{\circ }}) \\
& \Rightarrow LHS=0\,\,\,\,\,\,\,\,\,\because cos({{90}^{\circ }})=0 \\
\end{align}\]
And this is same as the right-hand side (RHS) of the identity\[sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ }-\text{ }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }=\text{ }0\]
Hence, we have proven the given identity.
Note: The alternate way to prove that \[sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ }-\text{ }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }=\text{ }0\], is as follows:
\[\begin{align}
& \Rightarrow LHS=\sin \left( {{35}^{{}^\circ \;}} \right)\sin \left( {{55}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right) \\
& \Rightarrow LHS=\sin \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{90}^{{}^\circ \;}}-{{55}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right)\,\,\,\,\,\,\,\,\because \sin \left( {{55}^{{}^\circ \;}} \right)=\cos \left( {{90}^{{}^\circ \;}}-{{55}^{{}^\circ \;}} \right) \\
& \Rightarrow LHS=\sin \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{35}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right) \\
& \Rightarrow LHS=\cos \left( {{90}^{{}^\circ \;}}-{{35}^{{}^\circ \;}} \right)\cos \left( {{35}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right)\,\,\,\,\,\,\,\,\,\because \sin \left( {{35}^{{}^\circ \;}} \right)=\cos \left( {{90}^{{}^\circ \;}}-{{35}^{{}^\circ \;}} \right) \\
& \Rightarrow LHS=\cos \left( {{55}^{{}^\circ \;}} \right)\cos \left( {{35}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right) \\
& \Rightarrow LHS=0 \\
& \Rightarrow LHS=RHS \\
\end{align}\]
Complete step-by-step answer:
It is to prove that \[sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ - }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }=\text{ }0\]. So here this expression in the left-hand side is similar to the identity \[\cos \left( s \right)\cos \left( t \right)-\sin \left( s \right)\sin \left( t \right)\]. Also, the expansion formula for the above is \[\cos \left( s+t \right)=\cos \left( s \right)\cos \left( t \right)-\sin \left( s \right)\sin \left( t \right)\]. Now here the expression in the left-hand side is \[sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ }-\text{ }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }\]. So, now reversing the sign, we have:
\[\text{-( }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }-sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }})\]. Next comparing this expression with \[\cos \left( s \right)\cos \left( t \right)-\sin \left( s \right)\sin \left( t \right)\], we have following:
\[\Rightarrow -\text{( }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ - }sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }})=-cos({{35}^{\circ }}+{{55}^{\circ }})\]
This is because \[s={{35}^{\circ }}\,\text{and}\,t={{55}^{\circ }}\] .
So we will simplify the LHS of the given identity \[sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ }-\text{ }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }=\text{ }0\], as follows:
\[\begin{align}
& \Rightarrow LHS=-\text{( }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ - }sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}) \\
& \Rightarrow LHS=-cos({{35}^{\circ }}+{{55}^{\circ }}) \\
& \Rightarrow LHS=-cos({{90}^{\circ }}) \\
& \Rightarrow LHS=0\,\,\,\,\,\,\,\,\,\because cos({{90}^{\circ }})=0 \\
\end{align}\]
And this is same as the right-hand side (RHS) of the identity\[sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ }-\text{ }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }=\text{ }0\]
Hence, we have proven the given identity.
Note: The alternate way to prove that \[sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ }-\text{ }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }=\text{ }0\], is as follows:
\[\begin{align}
& \Rightarrow LHS=\sin \left( {{35}^{{}^\circ \;}} \right)\sin \left( {{55}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right) \\
& \Rightarrow LHS=\sin \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{90}^{{}^\circ \;}}-{{55}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right)\,\,\,\,\,\,\,\,\because \sin \left( {{55}^{{}^\circ \;}} \right)=\cos \left( {{90}^{{}^\circ \;}}-{{55}^{{}^\circ \;}} \right) \\
& \Rightarrow LHS=\sin \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{35}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right) \\
& \Rightarrow LHS=\cos \left( {{90}^{{}^\circ \;}}-{{35}^{{}^\circ \;}} \right)\cos \left( {{35}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right)\,\,\,\,\,\,\,\,\,\because \sin \left( {{35}^{{}^\circ \;}} \right)=\cos \left( {{90}^{{}^\circ \;}}-{{35}^{{}^\circ \;}} \right) \\
& \Rightarrow LHS=\cos \left( {{55}^{{}^\circ \;}} \right)\cos \left( {{35}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right) \\
& \Rightarrow LHS=0 \\
& \Rightarrow LHS=RHS \\
\end{align}\]
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

