
Prove the given trigonometric expression:
\[\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\dfrac{3}{16}\]
Answer
584.7k+ views
Hint: At first convert the value of \[\sin {{60}^{\circ }}\] as \[\dfrac{\sqrt{3}}{2}\] as it is a value of the standard angle. Then use the product sum rules which are \[2\sin A\sin B=\cos \left( B-A \right)-\cos \left( A+B \right)\]and \[2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right)\] Then after all this, finally use the identity \[\sin \left( \pi -\theta \right)=\sin \theta \] to get the desired results.
Complete step by step answer:
We are given the expression \[\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}\] and we have to prove its product is \[\dfrac{3}{16}\]. So at first, we will write the expression as it is
\[\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}\]
We can further rearrange and write it as,
\[\sin {{60}^{\circ }}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{20}^{\circ }}\]
Now, by the use of standard values of the standard angles, \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\], we can write the expression as,
\[\dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}\]
Now we will multiply and divide 2 and write it as,
\[\dfrac{\sqrt{3}}{4}\left( 2\sin {{20}^{\circ }}\sin {{40}^{\circ }} \right)\sin {{80}^{\circ }}\]
Now, we will apply the identity, 2 sin A sin B = cos (B – A) – cos (B + A).
\[2\sin {{20}^{\circ }}\sin {{40}^{\circ }}=\cos \left( {{40}^{\circ }}-{{20}^{\circ }} \right)-\cos \left( {{40}^{\circ }}+{{20}^{\circ }} \right)\]
So, the expression holds as,
\[\dfrac{\sqrt{3}}{4}\left[ \cos {{20}^{\circ }}-\cos {{60}^{\circ }} \right]\sin {{80}^{\circ }}\]
We know that value of \[\cos {{60}^{\circ }}\text{ is }\dfrac{1}{2}\]. So, we can write it as,
\[\dfrac{\sqrt{3}}{4}\left( \cos {{20}^{\circ }}-\dfrac{1}{2} \right)\sin {{80}^{\circ }}\]
Now, let’s expand.
\[\dfrac{\sqrt{3}}{4}\cos {{20}^{\circ }}\sin {{80}^{\circ }}-\dfrac{\sqrt{3}}{8}\sin {{80}^{\circ }}\]
Now, let’s rewrite the expression as
\[\dfrac{\sqrt{3}}{8}\left( 2\cos {{20}^{\circ }}\sin {{80}^{\circ }} \right)-\dfrac{\sqrt{3}}{8}\sin {{80}^{\circ }}\]
Here, we will apply the identity, 2 cos A sin B = sin (A + B) – sin (A – B).
\[2\cos {{20}^{\circ }}\sin {{80}^{\circ }}=\sin \left( {{20}^{\circ }}+{{80}^{\circ }} \right)-\sin \left( {{20}^{\circ }}-{{80}^{\circ }} \right)\]
\[2\cos {{20}^{\circ }}\sin {{80}^{\circ }}=\sin \left( {{100}^{\circ }} \right)-\sin \left( -{{60}^{\circ }} \right)\]
We know that the value of \[\sin \left( -{{60}^{\circ }} \right)\text{ as }-\sin {{60}^{\circ }}\] which is equal to \[\dfrac{-\sqrt{3}}{2}\].
Hence, we get the expression as,
\[\dfrac{\sqrt{3}}{8}\left( \sin {{100}^{\circ }}-\dfrac{-\sqrt{3}}{2} \right)-\dfrac{\sqrt{3}}{8}\sin {{80}^{\circ }}\]
\[\dfrac{\sqrt{3}}{8}\sin {{100}^{\circ }}+\dfrac{\sqrt{3}}{8}\times \dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3}}{8}\sin {{80}^{\circ }}\]
We will apply \[\sin \left( \pi -\theta \right)=\sin \theta \]
\[\sin \left( {{180}^{\circ }}-80 \right)=\sin {{80}^{\circ }}\]
\[\sin {{100}^{\circ }}=\sin {{80}^{\circ }}\]
Here, we get the expression as,
\[\dfrac{\sqrt{3}}{8}\left( \sin {{100}^{\circ }}-\sin {{80}^{\circ }} \right)+\dfrac{3}{16}\]
\[=\dfrac{3}{16}\]
Note:
One can also do the same question by another method. Instead of using the identities one can check out trigonometric table to see the exact values of \[\sin {{20}^{o}},\sin {{40}^{o}},\sin {{60}^{o}},\sin {{80}^{o}}\] and then find their product to get the answer. The process would be very time consuming and will not give accurate answers.
Complete step by step answer:
We are given the expression \[\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}\] and we have to prove its product is \[\dfrac{3}{16}\]. So at first, we will write the expression as it is
\[\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}\]
We can further rearrange and write it as,
\[\sin {{60}^{\circ }}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{20}^{\circ }}\]
Now, by the use of standard values of the standard angles, \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\], we can write the expression as,
\[\dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}\]
Now we will multiply and divide 2 and write it as,
\[\dfrac{\sqrt{3}}{4}\left( 2\sin {{20}^{\circ }}\sin {{40}^{\circ }} \right)\sin {{80}^{\circ }}\]
Now, we will apply the identity, 2 sin A sin B = cos (B – A) – cos (B + A).
\[2\sin {{20}^{\circ }}\sin {{40}^{\circ }}=\cos \left( {{40}^{\circ }}-{{20}^{\circ }} \right)-\cos \left( {{40}^{\circ }}+{{20}^{\circ }} \right)\]
So, the expression holds as,
\[\dfrac{\sqrt{3}}{4}\left[ \cos {{20}^{\circ }}-\cos {{60}^{\circ }} \right]\sin {{80}^{\circ }}\]
We know that value of \[\cos {{60}^{\circ }}\text{ is }\dfrac{1}{2}\]. So, we can write it as,
\[\dfrac{\sqrt{3}}{4}\left( \cos {{20}^{\circ }}-\dfrac{1}{2} \right)\sin {{80}^{\circ }}\]
Now, let’s expand.
\[\dfrac{\sqrt{3}}{4}\cos {{20}^{\circ }}\sin {{80}^{\circ }}-\dfrac{\sqrt{3}}{8}\sin {{80}^{\circ }}\]
Now, let’s rewrite the expression as
\[\dfrac{\sqrt{3}}{8}\left( 2\cos {{20}^{\circ }}\sin {{80}^{\circ }} \right)-\dfrac{\sqrt{3}}{8}\sin {{80}^{\circ }}\]
Here, we will apply the identity, 2 cos A sin B = sin (A + B) – sin (A – B).
\[2\cos {{20}^{\circ }}\sin {{80}^{\circ }}=\sin \left( {{20}^{\circ }}+{{80}^{\circ }} \right)-\sin \left( {{20}^{\circ }}-{{80}^{\circ }} \right)\]
\[2\cos {{20}^{\circ }}\sin {{80}^{\circ }}=\sin \left( {{100}^{\circ }} \right)-\sin \left( -{{60}^{\circ }} \right)\]
We know that the value of \[\sin \left( -{{60}^{\circ }} \right)\text{ as }-\sin {{60}^{\circ }}\] which is equal to \[\dfrac{-\sqrt{3}}{2}\].
Hence, we get the expression as,
\[\dfrac{\sqrt{3}}{8}\left( \sin {{100}^{\circ }}-\dfrac{-\sqrt{3}}{2} \right)-\dfrac{\sqrt{3}}{8}\sin {{80}^{\circ }}\]
\[\dfrac{\sqrt{3}}{8}\sin {{100}^{\circ }}+\dfrac{\sqrt{3}}{8}\times \dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3}}{8}\sin {{80}^{\circ }}\]
We will apply \[\sin \left( \pi -\theta \right)=\sin \theta \]
\[\sin \left( {{180}^{\circ }}-80 \right)=\sin {{80}^{\circ }}\]
\[\sin {{100}^{\circ }}=\sin {{80}^{\circ }}\]
Here, we get the expression as,
\[\dfrac{\sqrt{3}}{8}\left( \sin {{100}^{\circ }}-\sin {{80}^{\circ }} \right)+\dfrac{3}{16}\]
\[=\dfrac{3}{16}\]
Note:
One can also do the same question by another method. Instead of using the identities one can check out trigonometric table to see the exact values of \[\sin {{20}^{o}},\sin {{40}^{o}},\sin {{60}^{o}},\sin {{80}^{o}}\] and then find their product to get the answer. The process would be very time consuming and will not give accurate answers.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Why is 1 molar aqueous solution more concentrated than class 11 chemistry CBSE

