Answer
Verified
493.5k+ views
Hint: To prove the given trigonometric expression, divide the numerator and denominator by \[\cos {{27}^{\circ }}\]. We will get an expression in the form of tangent function. Replace 1 in the fraction by \[\tan {{45}^{\circ }}\] and use the formula for tangent of sum of two angles to prove the given expression.
Complete step-by-step answer:
We have to prove the given trigonometric expression \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\tan {{72}^{\circ }}\]. We will use trigonometric properties to do so.
We will simplify the left hand side of the function, i.e., \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}\].
Divide the numerator and denominator of the given expression by \[\cos {{27}^{\circ }}\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}{1-\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}\].
We know that \[\dfrac{\sin x}{\cos x}=\tan x\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}{1-\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}=\dfrac{1+\tan {{27}^{\circ }}}{1-\tan {{27}^{\circ }}}\].
We know that \[\tan {{45}^{\circ }}=1\].
Replacing 1 by \[\tan {{45}^{\circ }}\] in the above expression, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\tan {{27}^{\circ }}}{1-\tan {{27}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}\].
We know the trigonometric formula for tangent of sum of two angles, which is \[\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\].
Substituting \[x={{45}^{\circ }},y={{27}^{\circ }}\] in the above expression, we have \[\tan \left( {{45}^{\circ }}+{{27}^{\circ }} \right)=\tan \left( {{72}^{\circ }} \right)=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}=\tan {{72}^{\circ }}\].
Hence, we have proved that \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\tan {{72}^{\circ }}\].
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Complete step-by-step answer:
We have to prove the given trigonometric expression \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\tan {{72}^{\circ }}\]. We will use trigonometric properties to do so.
We will simplify the left hand side of the function, i.e., \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}\].
Divide the numerator and denominator of the given expression by \[\cos {{27}^{\circ }}\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}{1-\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}\].
We know that \[\dfrac{\sin x}{\cos x}=\tan x\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}{1-\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}=\dfrac{1+\tan {{27}^{\circ }}}{1-\tan {{27}^{\circ }}}\].
We know that \[\tan {{45}^{\circ }}=1\].
Replacing 1 by \[\tan {{45}^{\circ }}\] in the above expression, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\tan {{27}^{\circ }}}{1-\tan {{27}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}\].
We know the trigonometric formula for tangent of sum of two angles, which is \[\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\].
Substituting \[x={{45}^{\circ }},y={{27}^{\circ }}\] in the above expression, we have \[\tan \left( {{45}^{\circ }}+{{27}^{\circ }} \right)=\tan \left( {{72}^{\circ }} \right)=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}=\tan {{72}^{\circ }}\].
Hence, we have proved that \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\tan {{72}^{\circ }}\].
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE