Prove the given trigonometric expression: \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\tan {{72}^{\circ }}\]
Answer
382.8k+ views
Hint: To prove the given trigonometric expression, divide the numerator and denominator by \[\cos {{27}^{\circ }}\]. We will get an expression in the form of tangent function. Replace 1 in the fraction by \[\tan {{45}^{\circ }}\] and use the formula for tangent of sum of two angles to prove the given expression.
Complete step-by-step answer:
We have to prove the given trigonometric expression \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\tan {{72}^{\circ }}\]. We will use trigonometric properties to do so.
We will simplify the left hand side of the function, i.e., \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}\].
Divide the numerator and denominator of the given expression by \[\cos {{27}^{\circ }}\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}{1-\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}\].
We know that \[\dfrac{\sin x}{\cos x}=\tan x\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}{1-\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}=\dfrac{1+\tan {{27}^{\circ }}}{1-\tan {{27}^{\circ }}}\].
We know that \[\tan {{45}^{\circ }}=1\].
Replacing 1 by \[\tan {{45}^{\circ }}\] in the above expression, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\tan {{27}^{\circ }}}{1-\tan {{27}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}\].
We know the trigonometric formula for tangent of sum of two angles, which is \[\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\].
Substituting \[x={{45}^{\circ }},y={{27}^{\circ }}\] in the above expression, we have \[\tan \left( {{45}^{\circ }}+{{27}^{\circ }} \right)=\tan \left( {{72}^{\circ }} \right)=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}=\tan {{72}^{\circ }}\].
Hence, we have proved that \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\tan {{72}^{\circ }}\].
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Complete step-by-step answer:
We have to prove the given trigonometric expression \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\tan {{72}^{\circ }}\]. We will use trigonometric properties to do so.
We will simplify the left hand side of the function, i.e., \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}\].
Divide the numerator and denominator of the given expression by \[\cos {{27}^{\circ }}\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}{1-\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}\].
We know that \[\dfrac{\sin x}{\cos x}=\tan x\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}{1-\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}=\dfrac{1+\tan {{27}^{\circ }}}{1-\tan {{27}^{\circ }}}\].
We know that \[\tan {{45}^{\circ }}=1\].
Replacing 1 by \[\tan {{45}^{\circ }}\] in the above expression, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\tan {{27}^{\circ }}}{1-\tan {{27}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}\].
We know the trigonometric formula for tangent of sum of two angles, which is \[\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\].
Substituting \[x={{45}^{\circ }},y={{27}^{\circ }}\] in the above expression, we have \[\tan \left( {{45}^{\circ }}+{{27}^{\circ }} \right)=\tan \left( {{72}^{\circ }} \right)=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}=\tan {{72}^{\circ }}\].
Hence, we have proved that \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\tan {{72}^{\circ }}\].
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Which one of the following places is unlikely to be class 8 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference Between Plant Cell and Animal Cell

Find the HCF and LCM of 6 72 and 120 using the prime class 6 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
