
Prove the given trigonometric expression: \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\tan {{72}^{\circ }}\]
Answer
620.7k+ views
Hint: To prove the given trigonometric expression, divide the numerator and denominator by \[\cos {{27}^{\circ }}\]. We will get an expression in the form of tangent function. Replace 1 in the fraction by \[\tan {{45}^{\circ }}\] and use the formula for tangent of sum of two angles to prove the given expression.
Complete step-by-step answer:
We have to prove the given trigonometric expression \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\tan {{72}^{\circ }}\]. We will use trigonometric properties to do so.
We will simplify the left hand side of the function, i.e., \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}\].
Divide the numerator and denominator of the given expression by \[\cos {{27}^{\circ }}\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}{1-\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}\].
We know that \[\dfrac{\sin x}{\cos x}=\tan x\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}{1-\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}=\dfrac{1+\tan {{27}^{\circ }}}{1-\tan {{27}^{\circ }}}\].
We know that \[\tan {{45}^{\circ }}=1\].
Replacing 1 by \[\tan {{45}^{\circ }}\] in the above expression, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\tan {{27}^{\circ }}}{1-\tan {{27}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}\].
We know the trigonometric formula for tangent of sum of two angles, which is \[\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\].
Substituting \[x={{45}^{\circ }},y={{27}^{\circ }}\] in the above expression, we have \[\tan \left( {{45}^{\circ }}+{{27}^{\circ }} \right)=\tan \left( {{72}^{\circ }} \right)=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}=\tan {{72}^{\circ }}\].
Hence, we have proved that \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\tan {{72}^{\circ }}\].
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Complete step-by-step answer:
We have to prove the given trigonometric expression \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\tan {{72}^{\circ }}\]. We will use trigonometric properties to do so.
We will simplify the left hand side of the function, i.e., \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}\].
Divide the numerator and denominator of the given expression by \[\cos {{27}^{\circ }}\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}{1-\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}\].
We know that \[\dfrac{\sin x}{\cos x}=\tan x\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}{1-\dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}}=\dfrac{1+\tan {{27}^{\circ }}}{1-\tan {{27}^{\circ }}}\].
We know that \[\tan {{45}^{\circ }}=1\].
Replacing 1 by \[\tan {{45}^{\circ }}\] in the above expression, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{1+\tan {{27}^{\circ }}}{1-\tan {{27}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}\].
We know the trigonometric formula for tangent of sum of two angles, which is \[\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\].
Substituting \[x={{45}^{\circ }},y={{27}^{\circ }}\] in the above expression, we have \[\tan \left( {{45}^{\circ }}+{{27}^{\circ }} \right)=\tan \left( {{72}^{\circ }} \right)=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}\].
Thus, we have \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}+\tan {{27}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{27}^{\circ }}}=\tan {{72}^{\circ }}\].
Hence, we have proved that \[\dfrac{\cos {{27}^{\circ }}+\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}-\sin {{27}^{\circ }}}=\tan {{72}^{\circ }}\].
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

