Answer
Verified
438.3k+ views
Hint: We start solving the problem by considering the L.H.S (Left hand side) of the given result. We then write $ {{15}^{\circ }} $ as $ \left( {{45}^{\circ }}-{{30}^{\circ }} \right) $ and make use of the result $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ to proceed through the problem. We then make use of the results $ \sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \sin {{30}^{\circ }}=\dfrac{1}{2} $ and $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ to proceed further through the problem. We then make the necessary calculations to complete the proof of given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result \[\sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\].
Let us consider L.H.S (Left hand side) of the given result.
So, we have \[\sin {{15}^{\circ }}\].
$ \Rightarrow \sin {{15}^{\circ }}=\sin \left( {{45}^{\circ }}-{{30}^{\circ }} \right) $ ---(1).
We know that $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ . Let us use this result in equation (1).
$ \Rightarrow \sin {{15}^{\circ }}=\sin {{45}^{\circ }}\cos {{30}^{\circ }}-\cos {{45}^{\circ }}\sin {{30}^{\circ }} $ ---(2).
We know that $ \sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \sin {{30}^{\circ }}=\dfrac{1}{2} $ and $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ . Let us use this results in equation (2).
$ \Rightarrow \sin {{15}^{\circ }}=\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)-\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right) $ .
$ \Rightarrow \sin {{15}^{\circ }}=\left( \dfrac{\sqrt{3}}{2\sqrt{2}} \right)-\left( \dfrac{1}{2\sqrt{2}} \right) $ .
$ \Rightarrow \sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}} $ .
We can see that the L.H.S (Left Hand Side) of the given result is equal to the R.H.S (Right Hand Side) of it, which means that we have proved the given result.
$ \therefore $ We have proved that the value of $ \sin {{15}^{\circ }} $ as $ \dfrac{\sqrt{3}-1}{2\sqrt{2}} $ .
Note:
We can also prove the given result of the problem as shown below:
We know that $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ .
$ \Rightarrow \cos \left( 2\left( {{15}^{\circ }} \right) \right)=\dfrac{\sqrt{3}}{2} $ ---(3).
We know that $ \cos 2A=1-2{{\sin }^{2}}A $ . Let us use this result in equation (3).
$ \Rightarrow 1-2{{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} $ .
$ \Rightarrow 1-\dfrac{\sqrt{3}}{2}=2{{\sin }^{2}}\left( {{15}^{\circ }} \right) $ .
$ \Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{3}{4}+\dfrac{1}{4}-2\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{2} \right) $ .
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{1}{2} \right)}^{2}}-2\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{2} \right)\] ---(6).
We can see that the R.H.S (Right hand side) of the equation (6) resembles $ {{a}^{2}}+{{b}^{2}}-2ab $ which is equal to $ {{\left( a-b \right)}^{2}} $ .
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{2}}\].
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}\].
\[\Rightarrow {{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{1}{2}\times {{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\sqrt{\dfrac{1}{2}\times {{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}}\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\dfrac{1}{\sqrt{2}}\times \left( \dfrac{\sqrt{3}-1}{2} \right)\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\], which is the given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result \[\sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\].
Let us consider L.H.S (Left hand side) of the given result.
So, we have \[\sin {{15}^{\circ }}\].
$ \Rightarrow \sin {{15}^{\circ }}=\sin \left( {{45}^{\circ }}-{{30}^{\circ }} \right) $ ---(1).
We know that $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ . Let us use this result in equation (1).
$ \Rightarrow \sin {{15}^{\circ }}=\sin {{45}^{\circ }}\cos {{30}^{\circ }}-\cos {{45}^{\circ }}\sin {{30}^{\circ }} $ ---(2).
We know that $ \sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \sin {{30}^{\circ }}=\dfrac{1}{2} $ and $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ . Let us use this results in equation (2).
$ \Rightarrow \sin {{15}^{\circ }}=\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)-\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right) $ .
$ \Rightarrow \sin {{15}^{\circ }}=\left( \dfrac{\sqrt{3}}{2\sqrt{2}} \right)-\left( \dfrac{1}{2\sqrt{2}} \right) $ .
$ \Rightarrow \sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}} $ .
We can see that the L.H.S (Left Hand Side) of the given result is equal to the R.H.S (Right Hand Side) of it, which means that we have proved the given result.
$ \therefore $ We have proved that the value of $ \sin {{15}^{\circ }} $ as $ \dfrac{\sqrt{3}-1}{2\sqrt{2}} $ .
Note:
We can also prove the given result of the problem as shown below:
We know that $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ .
$ \Rightarrow \cos \left( 2\left( {{15}^{\circ }} \right) \right)=\dfrac{\sqrt{3}}{2} $ ---(3).
We know that $ \cos 2A=1-2{{\sin }^{2}}A $ . Let us use this result in equation (3).
$ \Rightarrow 1-2{{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} $ .
$ \Rightarrow 1-\dfrac{\sqrt{3}}{2}=2{{\sin }^{2}}\left( {{15}^{\circ }} \right) $ .
$ \Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{3}{4}+\dfrac{1}{4}-2\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{2} \right) $ .
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{1}{2} \right)}^{2}}-2\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{2} \right)\] ---(6).
We can see that the R.H.S (Right hand side) of the equation (6) resembles $ {{a}^{2}}+{{b}^{2}}-2ab $ which is equal to $ {{\left( a-b \right)}^{2}} $ .
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{2}}\].
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}\].
\[\Rightarrow {{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{1}{2}\times {{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\sqrt{\dfrac{1}{2}\times {{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}}\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\dfrac{1}{\sqrt{2}}\times \left( \dfrac{\sqrt{3}-1}{2} \right)\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\], which is the given result.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE