
Prove the given inverse trigonometric equation as : ${{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\cot }^{-1}}3$.
Answer
592.5k+ views
Hint: Change the given cot inverse functions into tan inverse functions by using the formula: ${{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}$, for ‘x’ greater than 0, so that we have to prove: ${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\dfrac{1}{3}$. Now, take the sum of first two terms and use the formula: ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$, where $ab$ must be less than 1, to simplify. Then take the sum of this obtained expression with the third term. Use the same formula: ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$, to get the answer.
Complete step-by-step solution -
We have to prove: ${{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\cot }^{-1}}3$
Converting these cot inverse functions into tan inverse functions by using the formula: ${{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}$, for ‘x’ greater than 0, we have to prove: ${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\dfrac{1}{3}$.
Now, considering the sum ${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}$ by using the identity: ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$, where $ab$ must be less than 1, we get,
$\dfrac{1}{7}\times \dfrac{1}{8}=\dfrac{1}{56}$, which is less than 1. Therefore,
${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}={{\tan }^{-1}}\left( \dfrac{\dfrac{1}{7}+\dfrac{1}{8}}{1-\dfrac{1}{7}\times \dfrac{1}{8}} \right)$
Taking L.C.M and simplifying, we get,
$\begin{align}
& {{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}={{\tan }^{-1}}\left( \dfrac{\dfrac{8+7}{56}}{1-\dfrac{1}{56}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{15}{56}}{\dfrac{56-1}{56}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{15}{56}}{\dfrac{55}{56}} \right) \\
\end{align}$
Cancelling the common terms, we get,
${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}={{\tan }^{-1}}\dfrac{3}{11}$
Now considering the sum ${{\tan }^{-1}}\dfrac{3}{11}+{{\tan }^{-1}}\dfrac{1}{18}$, where $\dfrac{3}{11}\times \dfrac{1}{18}=\dfrac{1}{66}$ is less than 1, we get,
${{\tan }^{-1}}\dfrac{3}{11}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{11}+\dfrac{1}{18}}{1-\dfrac{3}{11}\times \dfrac{1}{18}} \right)$
Taking L.C.M and simplifying, we get,
$\begin{align}
& {{\tan }^{-1}}\dfrac{3}{11}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\left( \dfrac{\dfrac{18\times 3+11}{18\times 11}}{1-\dfrac{3}{18\times 11}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{54+11}{18\times 11}}{\dfrac{18\times 11-3}{18\times 11}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{65}{195} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{1}{3} \right) \\
& =R.H.S \\
\end{align}$
Therefore, it is proved that: ${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\dfrac{1}{3}$.
Hence, ${{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\cot }^{-1}}3$.
Note: One may note that we have changed the given cot inverse functions into tan inverse functions because generally, we remember the formula of the sum of two tan inverse functions and not cot inverse functions. You can remember the formula for cot inverse functions for solving the question in fewer steps. Remember that in the above question, it is difficult to solve while taking the sum of all the three terms together. Therefore, we have considered the sum of two terms at a time.
Complete step-by-step solution -
We have to prove: ${{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\cot }^{-1}}3$
Converting these cot inverse functions into tan inverse functions by using the formula: ${{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}$, for ‘x’ greater than 0, we have to prove: ${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\dfrac{1}{3}$.
Now, considering the sum ${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}$ by using the identity: ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$, where $ab$ must be less than 1, we get,
$\dfrac{1}{7}\times \dfrac{1}{8}=\dfrac{1}{56}$, which is less than 1. Therefore,
${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}={{\tan }^{-1}}\left( \dfrac{\dfrac{1}{7}+\dfrac{1}{8}}{1-\dfrac{1}{7}\times \dfrac{1}{8}} \right)$
Taking L.C.M and simplifying, we get,
$\begin{align}
& {{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}={{\tan }^{-1}}\left( \dfrac{\dfrac{8+7}{56}}{1-\dfrac{1}{56}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{15}{56}}{\dfrac{56-1}{56}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{15}{56}}{\dfrac{55}{56}} \right) \\
\end{align}$
Cancelling the common terms, we get,
${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}={{\tan }^{-1}}\dfrac{3}{11}$
Now considering the sum ${{\tan }^{-1}}\dfrac{3}{11}+{{\tan }^{-1}}\dfrac{1}{18}$, where $\dfrac{3}{11}\times \dfrac{1}{18}=\dfrac{1}{66}$ is less than 1, we get,
${{\tan }^{-1}}\dfrac{3}{11}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{11}+\dfrac{1}{18}}{1-\dfrac{3}{11}\times \dfrac{1}{18}} \right)$
Taking L.C.M and simplifying, we get,
$\begin{align}
& {{\tan }^{-1}}\dfrac{3}{11}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\left( \dfrac{\dfrac{18\times 3+11}{18\times 11}}{1-\dfrac{3}{18\times 11}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{54+11}{18\times 11}}{\dfrac{18\times 11-3}{18\times 11}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{65}{195} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{1}{3} \right) \\
& =R.H.S \\
\end{align}$
Therefore, it is proved that: ${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\dfrac{1}{3}$.
Hence, ${{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\cot }^{-1}}3$.
Note: One may note that we have changed the given cot inverse functions into tan inverse functions because generally, we remember the formula of the sum of two tan inverse functions and not cot inverse functions. You can remember the formula for cot inverse functions for solving the question in fewer steps. Remember that in the above question, it is difficult to solve while taking the sum of all the three terms together. Therefore, we have considered the sum of two terms at a time.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

