
Prove the given inverse trigonometric equation as : ${{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\cot }^{-1}}3$.
Answer
606.9k+ views
Hint: Change the given cot inverse functions into tan inverse functions by using the formula: ${{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}$, for ‘x’ greater than 0, so that we have to prove: ${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\dfrac{1}{3}$. Now, take the sum of first two terms and use the formula: ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$, where $ab$ must be less than 1, to simplify. Then take the sum of this obtained expression with the third term. Use the same formula: ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$, to get the answer.
Complete step-by-step solution -
We have to prove: ${{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\cot }^{-1}}3$
Converting these cot inverse functions into tan inverse functions by using the formula: ${{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}$, for ‘x’ greater than 0, we have to prove: ${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\dfrac{1}{3}$.
Now, considering the sum ${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}$ by using the identity: ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$, where $ab$ must be less than 1, we get,
$\dfrac{1}{7}\times \dfrac{1}{8}=\dfrac{1}{56}$, which is less than 1. Therefore,
${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}={{\tan }^{-1}}\left( \dfrac{\dfrac{1}{7}+\dfrac{1}{8}}{1-\dfrac{1}{7}\times \dfrac{1}{8}} \right)$
Taking L.C.M and simplifying, we get,
$\begin{align}
& {{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}={{\tan }^{-1}}\left( \dfrac{\dfrac{8+7}{56}}{1-\dfrac{1}{56}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{15}{56}}{\dfrac{56-1}{56}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{15}{56}}{\dfrac{55}{56}} \right) \\
\end{align}$
Cancelling the common terms, we get,
${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}={{\tan }^{-1}}\dfrac{3}{11}$
Now considering the sum ${{\tan }^{-1}}\dfrac{3}{11}+{{\tan }^{-1}}\dfrac{1}{18}$, where $\dfrac{3}{11}\times \dfrac{1}{18}=\dfrac{1}{66}$ is less than 1, we get,
${{\tan }^{-1}}\dfrac{3}{11}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{11}+\dfrac{1}{18}}{1-\dfrac{3}{11}\times \dfrac{1}{18}} \right)$
Taking L.C.M and simplifying, we get,
$\begin{align}
& {{\tan }^{-1}}\dfrac{3}{11}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\left( \dfrac{\dfrac{18\times 3+11}{18\times 11}}{1-\dfrac{3}{18\times 11}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{54+11}{18\times 11}}{\dfrac{18\times 11-3}{18\times 11}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{65}{195} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{1}{3} \right) \\
& =R.H.S \\
\end{align}$
Therefore, it is proved that: ${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\dfrac{1}{3}$.
Hence, ${{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\cot }^{-1}}3$.
Note: One may note that we have changed the given cot inverse functions into tan inverse functions because generally, we remember the formula of the sum of two tan inverse functions and not cot inverse functions. You can remember the formula for cot inverse functions for solving the question in fewer steps. Remember that in the above question, it is difficult to solve while taking the sum of all the three terms together. Therefore, we have considered the sum of two terms at a time.
Complete step-by-step solution -
We have to prove: ${{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\cot }^{-1}}3$
Converting these cot inverse functions into tan inverse functions by using the formula: ${{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}$, for ‘x’ greater than 0, we have to prove: ${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\dfrac{1}{3}$.
Now, considering the sum ${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}$ by using the identity: ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$, where $ab$ must be less than 1, we get,
$\dfrac{1}{7}\times \dfrac{1}{8}=\dfrac{1}{56}$, which is less than 1. Therefore,
${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}={{\tan }^{-1}}\left( \dfrac{\dfrac{1}{7}+\dfrac{1}{8}}{1-\dfrac{1}{7}\times \dfrac{1}{8}} \right)$
Taking L.C.M and simplifying, we get,
$\begin{align}
& {{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}={{\tan }^{-1}}\left( \dfrac{\dfrac{8+7}{56}}{1-\dfrac{1}{56}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{15}{56}}{\dfrac{56-1}{56}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{15}{56}}{\dfrac{55}{56}} \right) \\
\end{align}$
Cancelling the common terms, we get,
${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}={{\tan }^{-1}}\dfrac{3}{11}$
Now considering the sum ${{\tan }^{-1}}\dfrac{3}{11}+{{\tan }^{-1}}\dfrac{1}{18}$, where $\dfrac{3}{11}\times \dfrac{1}{18}=\dfrac{1}{66}$ is less than 1, we get,
${{\tan }^{-1}}\dfrac{3}{11}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{11}+\dfrac{1}{18}}{1-\dfrac{3}{11}\times \dfrac{1}{18}} \right)$
Taking L.C.M and simplifying, we get,
$\begin{align}
& {{\tan }^{-1}}\dfrac{3}{11}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\left( \dfrac{\dfrac{18\times 3+11}{18\times 11}}{1-\dfrac{3}{18\times 11}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\dfrac{54+11}{18\times 11}}{\dfrac{18\times 11-3}{18\times 11}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{65}{195} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{1}{3} \right) \\
& =R.H.S \\
\end{align}$
Therefore, it is proved that: ${{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}+{{\tan }^{-1}}\dfrac{1}{18}={{\tan }^{-1}}\dfrac{1}{3}$.
Hence, ${{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\cot }^{-1}}3$.
Note: One may note that we have changed the given cot inverse functions into tan inverse functions because generally, we remember the formula of the sum of two tan inverse functions and not cot inverse functions. You can remember the formula for cot inverse functions for solving the question in fewer steps. Remember that in the above question, it is difficult to solve while taking the sum of all the three terms together. Therefore, we have considered the sum of two terms at a time.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

