
Prove the following using trigonometric identities: $\tan {{20}^{\circ }}\tan {{80}^{\circ }}\cot {{50}^{\circ }}=\sqrt{3}$ \[\]
Answer
573k+ views
Hint: We proceed from left hand side of the proof and express the left hand side as $\tan \left( {{50}^{\circ }}-{{30}^{\circ }} \right)\tan \left( 50+{{30}^{\circ }} \right)\cot {{50}^{\circ }}$. We use reciprocal relationship $\cot A=\dfrac{1}{\tan A}$ to convert $\cot {{50}^{\circ }}$to $\tan {{50}^{\circ }}$, tangent angle difference formula $\tan \left( A+B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$ and tangent angle sum formula $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$ to simplify. W use tangent triple angle formula to $\tan 3A=\dfrac{3\tan A-{{\tan }^{3}}A}{1-3{{\tan }^{2}}A}$ to arrive at the right hand side. \[\]
Complete step by step answer:
We know from tangent sum of angles formula (also known as compound angle formula ) that for two angles with measure $A,B$ then the tangent of the their sum can be given as
\[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\]
We tangent difference of angle formula that the tangent of difference of angles $A,B$with $A>B$ is given by
\[\tan \left( A+B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}\]
We know from tangent triple angle formula that
\[\tan 3A=\dfrac{3\tan A-{{\tan }^{3}}A}{1-3{{\tan }^{2}}A}\]
We also know the reciprocal relationship between tangent and cotangent of any angle $A$ as
\[\cot A=\dfrac{1}{\tan A}\]
We are asked in the question to prove the following
\[\tan {{20}^{\circ }}\tan {{80}^{\circ }}\tan {{50}^{\circ }}=\sqrt{3}\]
We see in the left hand side of the proof statement that the two angles ${{20}^{\circ }},{{80}^{\circ }}$ have equal difference of ${{30}^{\circ }}$ from${{50}^{\circ }}$. So if we can express ${{20}^{\circ }},{{80}^{\circ }}$as angle difference from ${{50}^{\circ }}$ or angle sum with ${{50}^{\circ }}$ and then we shall use angle difference formula .So we have;
\[\begin{align}
& \Rightarrow \tan {{20}^{\circ }}\tan {{80}^{\circ }}\cot {{50}^{\circ }} \\
& \Rightarrow \tan \left( {{50}^{\circ }}-{{30}^{\circ }} \right)\tan \left( 50+{{30}^{\circ }} \right)\cot {{50}^{\circ }} \\
\end{align}\]
We use the reciprocal relation between tangent and co-tangent $\cot A=\dfrac{1}{\tan A}$ for $A={{50}^{\circ }}$ in the above step to have;
\[\Rightarrow \tan \left( {{50}^{\circ }}-{{30}^{\circ }} \right)\tan \left( 50+{{30}^{\circ }} \right)\dfrac{1}{\tan {{50}^{\circ }}}\]
We use the tangent angle difference formula for $A={{50}^{\circ }},B={{30}^{\circ }}$and have ;
\[\Rightarrow \dfrac{\tan {{50}^{\circ }}-\tan {{30}^{\circ }}}{1+\tan {{50}^{\circ }}\tan {{30}^{\circ }}}\tan \left( 50+{{30}^{\circ }} \right)\dfrac{1}{\tan {{50}^{\circ }}}\]
We use the tangent angle sum formula for $A={{50}^{\circ }},B={{30}^{\circ }}$and have ;
\[\Rightarrow \dfrac{\tan {{50}^{\circ }}-\tan {{30}^{\circ }}}{1+\tan {{50}^{\circ }}\tan {{30}^{\circ }}}\cdot \dfrac{\tan {{50}^{\circ }}+\tan {{30}^{\circ }}}{1-\tan {{50}^{\circ }}\tan {{30}^{\circ }}}\dfrac{1}{\tan {{50}^{\circ }}}\]
We put the value of $\tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}}$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{\tan {{50}^{\circ }}-\dfrac{1}{\sqrt{3}}}{1+\tan {{50}^{\circ }}\dfrac{1}{\sqrt{3}}}\cdot \dfrac{\tan {{50}^{\circ }}+\dfrac{1}{\sqrt{3}}}{1-\tan {{50}^{\circ }}\dfrac{1}{\sqrt{3}}}\dfrac{1}{\tan {{50}^{\circ }}} \\
& \Rightarrow \dfrac{\left( \tan {{50}^{\circ }}-\dfrac{1}{\sqrt{3}} \right)\left( \tan {{50}^{\circ }}+\dfrac{1}{\sqrt{3}} \right)}{\left( 1+\dfrac{\tan {{50}^{\circ }}}{\sqrt{3}} \right)\left( 1-\dfrac{\tan {{50}^{\circ }}}{\sqrt{3}} \right)}\dfrac{1}{\tan {{50}^{\circ }}} \\
\end{align}\]
We use algebraic identity of $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ for $a=\tan {{50}^{\circ }},b=\dfrac{1}{\sqrt{3}}$ in the numerator and for $a=1,b=\dfrac{\tan {{50}^{\circ }}}{\sqrt{3}}$ in the denominator of the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{{{\left( \tan {{50}^{\circ }} \right)}^{2}}-{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}}{{{1}^{2}}-{{\left( \dfrac{\tan {{50}^{\circ }}}{\sqrt{3}} \right)}^{2}}}\dfrac{1}{\tan {{50}^{\circ }}} \\
& \Rightarrow \dfrac{{{\tan }^{2}}{{50}^{\circ }}-\dfrac{1}{3}}{1-\dfrac{{{\tan }^{2}}{{50}^{\circ }}}{3}}\dfrac{1}{\tan {{50}^{\circ }}} \\
& \Rightarrow \dfrac{\dfrac{\left( 3{{\tan }^{2}}{{50}^{\circ }}-1 \right)}{3}}{\dfrac{\left( 3-{{\tan }^{2}}{{50}^{\circ }} \right)}{3}\tan {{50}^{\circ }}} \\
& \Rightarrow \dfrac{3{{\tan }^{2}}{{50}^{\circ }}-1}{3\tan {{50}^{\circ }}-{{\tan }^{3}}{{50}^{\circ }}} \\
\end{align}\]
We see that the above expression is in the form $\tan 3A$ for $A={{50}^{\circ }}$ but in reciprocal form. We take the numerator to the denominator and have;
\[\Rightarrow \dfrac{1}{\dfrac{3\tan {{50}^{\circ }}-{{\tan }^{3}}{{50}^{\circ }}}{3{{\tan }^{2}}{{50}^{\circ }}-1}}\]
We use the tangent triple angle formula for $A={{50}^{\circ }}$ in the denominator to have;
\[\begin{align}
& \Rightarrow \dfrac{1}{\tan \left( 3\times {{50}^{\circ }} \right)} \\
& \Rightarrow \dfrac{1}{\tan {{150}^{\circ }}} \\
\end{align}\]
We use the reduction formula about $\pi $ for that is $\tan \left( {{180}^{\circ }}-A \right)=\tan A$ for $A={{30}^{\circ }}$ to have;
\[\begin{align}
& \Rightarrow \dfrac{1}{\tan \left( {{180}^{\circ }}-{{30}^{\circ }} \right)} \\
& \Rightarrow \dfrac{1}{\tan {{30}^{\circ }}}=\dfrac{1}{\dfrac{1}{\sqrt{3}}}=\sqrt{3} \\
\end{align}\]
The above result is the same as the result in the right hand side of the given statement. Hence the statement is proved. \[\]
Note: We can alternatively solve by first using reduction formula about $\dfrac{\pi }{2}$ that is $\cot \left( {{90}^{\circ }}-\theta \right)=\tan \theta $ for $\theta ={{40}^{\circ }}$ and then using the tangent triple angle formula $\tan \theta \tan \left( \dfrac{\pi }{3}-\theta \right)\tan \left( \dfrac{\pi }{3}+\theta \right)=\tan 3\theta $ for $\theta ={{20}^{\circ }}$. We must be careful of the common mistake of using $\tan 3A$ formula directly in the step where we used $\tan 3A$ formula in the denominator.
Complete step by step answer:
We know from tangent sum of angles formula (also known as compound angle formula ) that for two angles with measure $A,B$ then the tangent of the their sum can be given as
\[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\]
We tangent difference of angle formula that the tangent of difference of angles $A,B$with $A>B$ is given by
\[\tan \left( A+B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}\]
We know from tangent triple angle formula that
\[\tan 3A=\dfrac{3\tan A-{{\tan }^{3}}A}{1-3{{\tan }^{2}}A}\]
We also know the reciprocal relationship between tangent and cotangent of any angle $A$ as
\[\cot A=\dfrac{1}{\tan A}\]
We are asked in the question to prove the following
\[\tan {{20}^{\circ }}\tan {{80}^{\circ }}\tan {{50}^{\circ }}=\sqrt{3}\]
We see in the left hand side of the proof statement that the two angles ${{20}^{\circ }},{{80}^{\circ }}$ have equal difference of ${{30}^{\circ }}$ from${{50}^{\circ }}$. So if we can express ${{20}^{\circ }},{{80}^{\circ }}$as angle difference from ${{50}^{\circ }}$ or angle sum with ${{50}^{\circ }}$ and then we shall use angle difference formula .So we have;
\[\begin{align}
& \Rightarrow \tan {{20}^{\circ }}\tan {{80}^{\circ }}\cot {{50}^{\circ }} \\
& \Rightarrow \tan \left( {{50}^{\circ }}-{{30}^{\circ }} \right)\tan \left( 50+{{30}^{\circ }} \right)\cot {{50}^{\circ }} \\
\end{align}\]
We use the reciprocal relation between tangent and co-tangent $\cot A=\dfrac{1}{\tan A}$ for $A={{50}^{\circ }}$ in the above step to have;
\[\Rightarrow \tan \left( {{50}^{\circ }}-{{30}^{\circ }} \right)\tan \left( 50+{{30}^{\circ }} \right)\dfrac{1}{\tan {{50}^{\circ }}}\]
We use the tangent angle difference formula for $A={{50}^{\circ }},B={{30}^{\circ }}$and have ;
\[\Rightarrow \dfrac{\tan {{50}^{\circ }}-\tan {{30}^{\circ }}}{1+\tan {{50}^{\circ }}\tan {{30}^{\circ }}}\tan \left( 50+{{30}^{\circ }} \right)\dfrac{1}{\tan {{50}^{\circ }}}\]
We use the tangent angle sum formula for $A={{50}^{\circ }},B={{30}^{\circ }}$and have ;
\[\Rightarrow \dfrac{\tan {{50}^{\circ }}-\tan {{30}^{\circ }}}{1+\tan {{50}^{\circ }}\tan {{30}^{\circ }}}\cdot \dfrac{\tan {{50}^{\circ }}+\tan {{30}^{\circ }}}{1-\tan {{50}^{\circ }}\tan {{30}^{\circ }}}\dfrac{1}{\tan {{50}^{\circ }}}\]
We put the value of $\tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}}$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{\tan {{50}^{\circ }}-\dfrac{1}{\sqrt{3}}}{1+\tan {{50}^{\circ }}\dfrac{1}{\sqrt{3}}}\cdot \dfrac{\tan {{50}^{\circ }}+\dfrac{1}{\sqrt{3}}}{1-\tan {{50}^{\circ }}\dfrac{1}{\sqrt{3}}}\dfrac{1}{\tan {{50}^{\circ }}} \\
& \Rightarrow \dfrac{\left( \tan {{50}^{\circ }}-\dfrac{1}{\sqrt{3}} \right)\left( \tan {{50}^{\circ }}+\dfrac{1}{\sqrt{3}} \right)}{\left( 1+\dfrac{\tan {{50}^{\circ }}}{\sqrt{3}} \right)\left( 1-\dfrac{\tan {{50}^{\circ }}}{\sqrt{3}} \right)}\dfrac{1}{\tan {{50}^{\circ }}} \\
\end{align}\]
We use algebraic identity of $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ for $a=\tan {{50}^{\circ }},b=\dfrac{1}{\sqrt{3}}$ in the numerator and for $a=1,b=\dfrac{\tan {{50}^{\circ }}}{\sqrt{3}}$ in the denominator of the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{{{\left( \tan {{50}^{\circ }} \right)}^{2}}-{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}}{{{1}^{2}}-{{\left( \dfrac{\tan {{50}^{\circ }}}{\sqrt{3}} \right)}^{2}}}\dfrac{1}{\tan {{50}^{\circ }}} \\
& \Rightarrow \dfrac{{{\tan }^{2}}{{50}^{\circ }}-\dfrac{1}{3}}{1-\dfrac{{{\tan }^{2}}{{50}^{\circ }}}{3}}\dfrac{1}{\tan {{50}^{\circ }}} \\
& \Rightarrow \dfrac{\dfrac{\left( 3{{\tan }^{2}}{{50}^{\circ }}-1 \right)}{3}}{\dfrac{\left( 3-{{\tan }^{2}}{{50}^{\circ }} \right)}{3}\tan {{50}^{\circ }}} \\
& \Rightarrow \dfrac{3{{\tan }^{2}}{{50}^{\circ }}-1}{3\tan {{50}^{\circ }}-{{\tan }^{3}}{{50}^{\circ }}} \\
\end{align}\]
We see that the above expression is in the form $\tan 3A$ for $A={{50}^{\circ }}$ but in reciprocal form. We take the numerator to the denominator and have;
\[\Rightarrow \dfrac{1}{\dfrac{3\tan {{50}^{\circ }}-{{\tan }^{3}}{{50}^{\circ }}}{3{{\tan }^{2}}{{50}^{\circ }}-1}}\]
We use the tangent triple angle formula for $A={{50}^{\circ }}$ in the denominator to have;
\[\begin{align}
& \Rightarrow \dfrac{1}{\tan \left( 3\times {{50}^{\circ }} \right)} \\
& \Rightarrow \dfrac{1}{\tan {{150}^{\circ }}} \\
\end{align}\]
We use the reduction formula about $\pi $ for that is $\tan \left( {{180}^{\circ }}-A \right)=\tan A$ for $A={{30}^{\circ }}$ to have;
\[\begin{align}
& \Rightarrow \dfrac{1}{\tan \left( {{180}^{\circ }}-{{30}^{\circ }} \right)} \\
& \Rightarrow \dfrac{1}{\tan {{30}^{\circ }}}=\dfrac{1}{\dfrac{1}{\sqrt{3}}}=\sqrt{3} \\
\end{align}\]
The above result is the same as the result in the right hand side of the given statement. Hence the statement is proved. \[\]
Note: We can alternatively solve by first using reduction formula about $\dfrac{\pi }{2}$ that is $\cot \left( {{90}^{\circ }}-\theta \right)=\tan \theta $ for $\theta ={{40}^{\circ }}$ and then using the tangent triple angle formula $\tan \theta \tan \left( \dfrac{\pi }{3}-\theta \right)\tan \left( \dfrac{\pi }{3}+\theta \right)=\tan 3\theta $ for $\theta ={{20}^{\circ }}$. We must be careful of the common mistake of using $\tan 3A$ formula directly in the step where we used $\tan 3A$ formula in the denominator.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

