
Prove the following trigonometric relation-
\[\dfrac{{\cot {\text{A + cscA - 1}}}}{{\cot {\text{A - cscA + 1}}}} = \dfrac{{{\text{1 + cosA}}}}{{{\text{sinA}}}}\]
Answer
616.5k+ views
Hint: In order to solve this question, proceed by substitute 1 by a trigonometric identity and using the difference of two squares formula in the LHS i.e. $1{\text{ = cs}}{{\text{c}}^2}{\text{A - co}}{{\text{t}}^2}{\text{A }}$
Then simplify the expression. We will get our RHS.
Complete step-by-step answer:
To prove - \[\dfrac{{\cot {\text{A + cscA - 1}}}}{{\cot {\text{A - cscA + 1}}}} = \dfrac{{{\text{1 + cosA}}}}{{{\text{sinA}}}}\]
Consider the left hand side,
\[\dfrac{{\cot {\text{A + cscA - 1}}}}{{\cot {\text{A - cscA + 1}}}}\] …………… (1)
We know that, $1 + {\text{co}}{{\text{t}}^2}{\text{A = cs}}{{\text{c}}^2}{\text{A}}$
This can be written as, $1{\text{ = cs}}{{\text{c}}^2}{\text{A - co}}{{\text{t}}^2}{\text{A }}$
first put the value of 1 in the numerator of equation (1) in terms of $1{\text{ = cs}}{{\text{c}}^2}{\text{A - co}}{{\text{t}}^2}{\text{A }}$
so, Substituting this in the numerator of...............(1)
\[\dfrac{{\cot {\text{A + cscA - }}\left( {{\text{cs}}{{\text{c}}^2}{\text{A - }}{{\cot }^2}{\text{A}}} \right)}}{{\cot {\text{A - cscA + 1}}}}\]
In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$ ………..(2)
Here, ${\text{m = }}({\text{cscA) and n = }}({\text{cotA)}}$
So using expression (2)
$ \Rightarrow {(\csc {\text{A)}}^2} - {(\cot {\text{A)}}^2} = \left( {\csc {\text{A + }}\cot {\text{A}}} \right)\left( {\csc {\text{A - }}\cot {\text{A}}} \right)$ …. (3)
Now on putting the value of \[{(\csc {\text{A)}}^2} - {(\cot {\text{A)}}^2}\]in equation (1) from equation (3)
\[ \Rightarrow \dfrac{{\cot {\text{A + cscA - }}\left( {{\text{cscA + }}\cot {\text{A}}} \right)\left( {{\text{cscA - }}\cot {\text{A}}} \right)}}{{\cot {\text{A - cscA + 1}}}}\]
\[ \Rightarrow \dfrac{{(\cot {\text{A + cscA)}}\left( {{\text{1 - }}\left( {{\text{cscA - }}\cot {\text{A}}} \right)} \right)}}{{\cot {\text{A - cscA + 1}}}}\]
This can be written as
\[ \Rightarrow \dfrac{{(\cot {\text{A + cscA)}}\left( {{\text{1 - cscA + }}\cot {\text{A}}} \right)}}{{\cot {\text{A - cscA + 1}}}}\]
On cancelling \[\left( {{\text{1 - cscA + }}\cot {\text{A}}} \right)\] from numerator and denominator both
\[ \Rightarrow (\cot {\text{A + cscA)}}\] ……. (4)
We now that \[\cot {\text{A = }}\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}\& {\text{ cscA = }}\dfrac{1}{{\sin {\text{A}}}}\], so on substituting these results in equation (4)
\[ \Rightarrow \dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}{\text{ + }}\dfrac{1}{{\sin {\text{A}}}}\]
Here denominator of both terms are same so can be taken as common
\[ \Rightarrow \dfrac{{1 + \cos {\text{A}}}}{{\sin {\text{A}}}} = {\text{RHS}}\]
Therefore, \[\dfrac{{\cot {\text{A + cscA - 1}}}}{{\cot {\text{A - cscA + 1}}}}{\text{ (LHS)}} = \dfrac{{{\text{1 + cosA}}}}{{{\text{sinA}}}}{\text{ (RHS)}}\]
Hence proved.
Note- Whenever we face such types of problems the key concept is that we always try to think of some short substitution so that some terms get cancelled and expression can be reduced. And whenever you find a trigonometric expression having even power we should use the identity “difference of two squares” which is stated above.
Complete step-by-step answer:
To prove - \[\dfrac{{\cot {\text{A + cscA - 1}}}}{{\cot {\text{A - cscA + 1}}}} = \dfrac{{{\text{1 + cosA}}}}{{{\text{sinA}}}}\]
Consider the left hand side,
\[\dfrac{{\cot {\text{A + cscA - 1}}}}{{\cot {\text{A - cscA + 1}}}}\] …………… (1)
We know that, $1 + {\text{co}}{{\text{t}}^2}{\text{A = cs}}{{\text{c}}^2}{\text{A}}$
This can be written as, $1{\text{ = cs}}{{\text{c}}^2}{\text{A - co}}{{\text{t}}^2}{\text{A }}$
first put the value of 1 in the numerator of equation (1) in terms of $1{\text{ = cs}}{{\text{c}}^2}{\text{A - co}}{{\text{t}}^2}{\text{A }}$
so, Substituting this in the numerator of...............(1)
\[\dfrac{{\cot {\text{A + cscA - }}\left( {{\text{cs}}{{\text{c}}^2}{\text{A - }}{{\cot }^2}{\text{A}}} \right)}}{{\cot {\text{A - cscA + 1}}}}\]
In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$ ………..(2)
Here, ${\text{m = }}({\text{cscA) and n = }}({\text{cotA)}}$
So using expression (2)
$ \Rightarrow {(\csc {\text{A)}}^2} - {(\cot {\text{A)}}^2} = \left( {\csc {\text{A + }}\cot {\text{A}}} \right)\left( {\csc {\text{A - }}\cot {\text{A}}} \right)$ …. (3)
Now on putting the value of \[{(\csc {\text{A)}}^2} - {(\cot {\text{A)}}^2}\]in equation (1) from equation (3)
\[ \Rightarrow \dfrac{{\cot {\text{A + cscA - }}\left( {{\text{cscA + }}\cot {\text{A}}} \right)\left( {{\text{cscA - }}\cot {\text{A}}} \right)}}{{\cot {\text{A - cscA + 1}}}}\]
\[ \Rightarrow \dfrac{{(\cot {\text{A + cscA)}}\left( {{\text{1 - }}\left( {{\text{cscA - }}\cot {\text{A}}} \right)} \right)}}{{\cot {\text{A - cscA + 1}}}}\]
This can be written as
\[ \Rightarrow \dfrac{{(\cot {\text{A + cscA)}}\left( {{\text{1 - cscA + }}\cot {\text{A}}} \right)}}{{\cot {\text{A - cscA + 1}}}}\]
On cancelling \[\left( {{\text{1 - cscA + }}\cot {\text{A}}} \right)\] from numerator and denominator both
\[ \Rightarrow (\cot {\text{A + cscA)}}\] ……. (4)
We now that \[\cot {\text{A = }}\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}\& {\text{ cscA = }}\dfrac{1}{{\sin {\text{A}}}}\], so on substituting these results in equation (4)
\[ \Rightarrow \dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}{\text{ + }}\dfrac{1}{{\sin {\text{A}}}}\]
Here denominator of both terms are same so can be taken as common
\[ \Rightarrow \dfrac{{1 + \cos {\text{A}}}}{{\sin {\text{A}}}} = {\text{RHS}}\]
Therefore, \[\dfrac{{\cot {\text{A + cscA - 1}}}}{{\cot {\text{A - cscA + 1}}}}{\text{ (LHS)}} = \dfrac{{{\text{1 + cosA}}}}{{{\text{sinA}}}}{\text{ (RHS)}}\]
Hence proved.
Note- Whenever we face such types of problems the key concept is that we always try to think of some short substitution so that some terms get cancelled and expression can be reduced. And whenever you find a trigonometric expression having even power we should use the identity “difference of two squares” which is stated above.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

