
Prove the following trigonometric identity:
$\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\sin A\tan A-\cot A\cos A$
Answer
615.3k+ views
Hint: Take the left hand side or the given expression. Put $\cot A=\dfrac{\cos A}{\sin A},\tan A=\dfrac{\sin A}{\cos A}$.
Then do the multiplication and arrange the terms to get the right hand side.
Complete step-by-step answer:
We have to prove the following identity:
$\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\sin A\tan A-\cot A\cos A$
Let us first take the left hand side of the above expression.
$\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)$
We know that $\cot A=\dfrac{\cos A}{\sin A},\tan A=\dfrac{\sin A}{\cos A}$. Put these values in the above expression.
$=\left( 1+\dfrac{\cos A}{\sin A}+\dfrac{\sin A}{\cos A} \right)\left( \sin A-\cos A \right)$
By multiplying both the terms we will get,
$=\sin A\left( 1+\dfrac{\cos A}{\sin A}+\dfrac{\sin A}{\cos A} \right)-\cos A\left( 1+\dfrac{\cos A}{\sin A}+\dfrac{\sin A}{\cos A} \right)$
$=\sin A+\cos A+\dfrac{{{\sin }^{2}}A}{\cos A}-\left( \cos A+\dfrac{{{\cos }^{2}}A}{\sin A}+\sin A \right)$
Now we will adjust terms in such a way so that we can get the right hand side.
$=\sin A+\cos A+\dfrac{\sin A}{\cos A}\times \sin A-\cos A-\sin A-\dfrac{\cos A}{\sin A}\times \cos A$
Now we can cancel out the opposite terms from the above expression and we will put $\cot A=\dfrac{\cos A}{\sin A},\tan A=\dfrac{\sin A}{\cos A}$
Therefore,
$=\tan A\sin A-\cot A\cos A$, this is our right hand side expression
Hence,
$\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\sin A\tan A-\cot A\cos A$
Note: Alternatively we can start the proof with the right hand side. That is:
$\sin A\tan A-\cot A\cos A$
Put $\cot A=\dfrac{\cos A}{\sin A},\tan A=\dfrac{\sin A}{\cos A}$.
$=\sin A\dfrac{\sin A}{\cos A}-\cos A\dfrac{\cos A}{\sin A}$
$=\dfrac{{{\sin }^{2}}A}{\cos A}-\dfrac{{{\cos }^{2}}A}{\sin A}$
Now take the left hand side. By putting $\cot A=\dfrac{\cos A}{\sin A},\tan A=\dfrac{\sin A}{\cos A}$ and multiplying both the terms we will get:
$=\dfrac{{{\sin }^{2}}A}{\cos A}-\dfrac{{{\cos }^{2}}A}{\sin A}$
Therefore,
Left hand side = right hand side.
Then do the multiplication and arrange the terms to get the right hand side.
Complete step-by-step answer:
We have to prove the following identity:
$\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\sin A\tan A-\cot A\cos A$
Let us first take the left hand side of the above expression.
$\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)$
We know that $\cot A=\dfrac{\cos A}{\sin A},\tan A=\dfrac{\sin A}{\cos A}$. Put these values in the above expression.
$=\left( 1+\dfrac{\cos A}{\sin A}+\dfrac{\sin A}{\cos A} \right)\left( \sin A-\cos A \right)$
By multiplying both the terms we will get,
$=\sin A\left( 1+\dfrac{\cos A}{\sin A}+\dfrac{\sin A}{\cos A} \right)-\cos A\left( 1+\dfrac{\cos A}{\sin A}+\dfrac{\sin A}{\cos A} \right)$
$=\sin A+\cos A+\dfrac{{{\sin }^{2}}A}{\cos A}-\left( \cos A+\dfrac{{{\cos }^{2}}A}{\sin A}+\sin A \right)$
Now we will adjust terms in such a way so that we can get the right hand side.
$=\sin A+\cos A+\dfrac{\sin A}{\cos A}\times \sin A-\cos A-\sin A-\dfrac{\cos A}{\sin A}\times \cos A$
Now we can cancel out the opposite terms from the above expression and we will put $\cot A=\dfrac{\cos A}{\sin A},\tan A=\dfrac{\sin A}{\cos A}$
Therefore,
$=\tan A\sin A-\cot A\cos A$, this is our right hand side expression
Hence,
$\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\sin A\tan A-\cot A\cos A$
Note: Alternatively we can start the proof with the right hand side. That is:
$\sin A\tan A-\cot A\cos A$
Put $\cot A=\dfrac{\cos A}{\sin A},\tan A=\dfrac{\sin A}{\cos A}$.
$=\sin A\dfrac{\sin A}{\cos A}-\cos A\dfrac{\cos A}{\sin A}$
$=\dfrac{{{\sin }^{2}}A}{\cos A}-\dfrac{{{\cos }^{2}}A}{\sin A}$
Now take the left hand side. By putting $\cot A=\dfrac{\cos A}{\sin A},\tan A=\dfrac{\sin A}{\cos A}$ and multiplying both the terms we will get:
$=\dfrac{{{\sin }^{2}}A}{\cos A}-\dfrac{{{\cos }^{2}}A}{\sin A}$
Therefore,
Left hand side = right hand side.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

