
Prove the following trigonometric equation:
$\cos 2x\cos \dfrac{x}{2}-\cos 3x\cos \dfrac{9x}{2}=\sin 5x\sin \dfrac{5x}{2}$
Answer
607.2k+ views
Hint:To prove the above equation, we are trying to reduce the L.H.S expression to R.H.S of the given expression. We are going to use the identity of $2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$ in the L.H.S expression and then simplify.
Complete step-by-step answer:
The given equation that we have to prove is:
$\cos 2x\cos \dfrac{x}{2}-\cos 3x\cos \dfrac{9x}{2}=\sin 5x\sin \dfrac{5x}{2}$
Applying the identity of $2\cos A\cos B$ on $\cos 2x\cos \dfrac{x}{2}$ we get,
$2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$
$\begin{align}
& \cos 2x\cos \dfrac{x}{2}=\dfrac{1}{2}\left( \cos \left( 2x+\dfrac{x}{2} \right)+\cos \left( 2x-\dfrac{x}{2} \right) \right) \\
& \Rightarrow \cos 2x\cos \dfrac{x}{2}=\dfrac{1}{2}\left( \cos \left( \dfrac{5x}{2} \right)+\cos \left( \dfrac{3x}{2} \right) \right) \\
\end{align}$
Applying the identity of $2\cos A\cos B$ on $\cos 3x\cos \dfrac{9x}{2}$ we get,
$\begin{align}
& \cos 3x\cos \dfrac{9x}{2}=\dfrac{1}{2}\left( \cos \left( 3x+\dfrac{9x}{2} \right)+\cos \left( 3x-\dfrac{9x}{2} \right) \right) \\
& \Rightarrow \cos 3x\cos \dfrac{9x}{2}=\dfrac{1}{2}\left( \cos \left( \dfrac{15x}{2} \right)+\cos \left( -\dfrac{3x}{2} \right) \right) \\
\end{align}$
Now, substituting these values in the L.H.S of the given expression we get,
$\begin{align}
& \cos 2x\cos \dfrac{x}{2}-\cos 3x\cos \dfrac{9x}{2} \\
& =\dfrac{1}{2}\left( \left( \cos \dfrac{5x}{2}+\cos \dfrac{3x}{2} \right)-\left( \cos \dfrac{15x}{2}+\cos \left( -\dfrac{3x}{2} \right) \right) \right) \\
\end{align}$
We know that $\cos \left( -x \right)=\cos x$ so applying this cosine property in the above expression,
$\begin{align}
& \dfrac{1}{2}\left( \left( \cos \dfrac{5x}{2}+\cos \dfrac{3x}{2} \right)-\left( \cos \dfrac{15x}{2}+\cos \left( \dfrac{3x}{2} \right) \right) \right) \\
& =\dfrac{1}{2}\left( \cos \dfrac{5x}{2}+\cos \dfrac{3x}{2}-\cos \dfrac{15x}{2}-\cos \dfrac{3x}{2} \right) \\
\end{align}$
As $\cos \dfrac{3x}{2}$ will be cancelled out in the above expression then the remaining expression will look like:
$\dfrac{1}{2}\left( \cos \dfrac{5x}{2}-\cos \dfrac{15x}{2} \right)$
Now, we are going to apply the identity of $\cos C-\cos D$ in the above expression as:
$\cos C-\cos D=-2\sin \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
$\begin{align}
& \dfrac{1}{2}\left( -2\sin \left( \dfrac{\dfrac{5x}{2}+\dfrac{15x}{2}}{2} \right)\sin \left( \dfrac{\dfrac{5x}{2}-\dfrac{15x}{2}}{2} \right) \right) \\
& =\dfrac{1}{2}\left( -2\sin 5x\sin \left( -\dfrac{5x}{2} \right) \right) \\
\end{align}$
We know from the trigonometric property of sine that $\sin (-x)=-\sin x$. Applying this property in the above expression and you can also see that 2 will be cancelled out from the numerator and the denominator.
$\sin 5x\sin \dfrac{5x}{2}$
The simplification of L.H.S has come out as $\sin 5x\sin \dfrac{5x}{2}$ which is equal to R.H.S of the given expression.
Hence, we have shown that L.H.S = R.H.S of the given expression.
Note: The other way of doing this equation is:
$\cos 2x\cos \dfrac{x}{2}-\cos 3x\cos \dfrac{9x}{2}=\sin 5x\sin \dfrac{5x}{2}$
We can rewrite the above equation as:
$\cos 2x\cos \dfrac{x}{2}=\cos 3x\cos \dfrac{9x}{2}+\sin 5x\sin \dfrac{5x}{2}$
Now, solve the R.H.S using the identities of $2\cos A\cos B$ and $2\sin A\sin B$ as follows:
$\begin{align}
& \dfrac{1}{2}\left( \cos \left( \dfrac{15x}{2} \right)+\cos \left( -\dfrac{3x}{2} \right)+\cos \left( \dfrac{5x}{2} \right)-\cos \left( \dfrac{15x}{2} \right) \right) \\
& =\dfrac{1}{2}\left( \cos \left( \dfrac{3x}{2} \right)+\cos \left( \dfrac{5x}{2} \right) \right) \\
\end{align}$
Now, using the identity of $\cos C+\cos D$ in the above equation we get,
$\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
$\dfrac{1}{2}\left( 2\cos 2x\cos \dfrac{x}{2} \right)$
As 2 will be cancelled out from the numerator and the denominator so the remaining expression will look like:
$\cos 2x\cos \dfrac{x}{2}$
As we can see, that simplification of the R.H.S yields $\cos 2x\cos \dfrac{x}{2}$ which is equal to L.H.S of the given expression.
Hence, we have proved L.H.S = R.H.S of the given expression.
Complete step-by-step answer:
The given equation that we have to prove is:
$\cos 2x\cos \dfrac{x}{2}-\cos 3x\cos \dfrac{9x}{2}=\sin 5x\sin \dfrac{5x}{2}$
Applying the identity of $2\cos A\cos B$ on $\cos 2x\cos \dfrac{x}{2}$ we get,
$2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$
$\begin{align}
& \cos 2x\cos \dfrac{x}{2}=\dfrac{1}{2}\left( \cos \left( 2x+\dfrac{x}{2} \right)+\cos \left( 2x-\dfrac{x}{2} \right) \right) \\
& \Rightarrow \cos 2x\cos \dfrac{x}{2}=\dfrac{1}{2}\left( \cos \left( \dfrac{5x}{2} \right)+\cos \left( \dfrac{3x}{2} \right) \right) \\
\end{align}$
Applying the identity of $2\cos A\cos B$ on $\cos 3x\cos \dfrac{9x}{2}$ we get,
$\begin{align}
& \cos 3x\cos \dfrac{9x}{2}=\dfrac{1}{2}\left( \cos \left( 3x+\dfrac{9x}{2} \right)+\cos \left( 3x-\dfrac{9x}{2} \right) \right) \\
& \Rightarrow \cos 3x\cos \dfrac{9x}{2}=\dfrac{1}{2}\left( \cos \left( \dfrac{15x}{2} \right)+\cos \left( -\dfrac{3x}{2} \right) \right) \\
\end{align}$
Now, substituting these values in the L.H.S of the given expression we get,
$\begin{align}
& \cos 2x\cos \dfrac{x}{2}-\cos 3x\cos \dfrac{9x}{2} \\
& =\dfrac{1}{2}\left( \left( \cos \dfrac{5x}{2}+\cos \dfrac{3x}{2} \right)-\left( \cos \dfrac{15x}{2}+\cos \left( -\dfrac{3x}{2} \right) \right) \right) \\
\end{align}$
We know that $\cos \left( -x \right)=\cos x$ so applying this cosine property in the above expression,
$\begin{align}
& \dfrac{1}{2}\left( \left( \cos \dfrac{5x}{2}+\cos \dfrac{3x}{2} \right)-\left( \cos \dfrac{15x}{2}+\cos \left( \dfrac{3x}{2} \right) \right) \right) \\
& =\dfrac{1}{2}\left( \cos \dfrac{5x}{2}+\cos \dfrac{3x}{2}-\cos \dfrac{15x}{2}-\cos \dfrac{3x}{2} \right) \\
\end{align}$
As $\cos \dfrac{3x}{2}$ will be cancelled out in the above expression then the remaining expression will look like:
$\dfrac{1}{2}\left( \cos \dfrac{5x}{2}-\cos \dfrac{15x}{2} \right)$
Now, we are going to apply the identity of $\cos C-\cos D$ in the above expression as:
$\cos C-\cos D=-2\sin \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
$\begin{align}
& \dfrac{1}{2}\left( -2\sin \left( \dfrac{\dfrac{5x}{2}+\dfrac{15x}{2}}{2} \right)\sin \left( \dfrac{\dfrac{5x}{2}-\dfrac{15x}{2}}{2} \right) \right) \\
& =\dfrac{1}{2}\left( -2\sin 5x\sin \left( -\dfrac{5x}{2} \right) \right) \\
\end{align}$
We know from the trigonometric property of sine that $\sin (-x)=-\sin x$. Applying this property in the above expression and you can also see that 2 will be cancelled out from the numerator and the denominator.
$\sin 5x\sin \dfrac{5x}{2}$
The simplification of L.H.S has come out as $\sin 5x\sin \dfrac{5x}{2}$ which is equal to R.H.S of the given expression.
Hence, we have shown that L.H.S = R.H.S of the given expression.
Note: The other way of doing this equation is:
$\cos 2x\cos \dfrac{x}{2}-\cos 3x\cos \dfrac{9x}{2}=\sin 5x\sin \dfrac{5x}{2}$
We can rewrite the above equation as:
$\cos 2x\cos \dfrac{x}{2}=\cos 3x\cos \dfrac{9x}{2}+\sin 5x\sin \dfrac{5x}{2}$
Now, solve the R.H.S using the identities of $2\cos A\cos B$ and $2\sin A\sin B$ as follows:
$\begin{align}
& \dfrac{1}{2}\left( \cos \left( \dfrac{15x}{2} \right)+\cos \left( -\dfrac{3x}{2} \right)+\cos \left( \dfrac{5x}{2} \right)-\cos \left( \dfrac{15x}{2} \right) \right) \\
& =\dfrac{1}{2}\left( \cos \left( \dfrac{3x}{2} \right)+\cos \left( \dfrac{5x}{2} \right) \right) \\
\end{align}$
Now, using the identity of $\cos C+\cos D$ in the above equation we get,
$\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
$\dfrac{1}{2}\left( 2\cos 2x\cos \dfrac{x}{2} \right)$
As 2 will be cancelled out from the numerator and the denominator so the remaining expression will look like:
$\cos 2x\cos \dfrac{x}{2}$
As we can see, that simplification of the R.H.S yields $\cos 2x\cos \dfrac{x}{2}$ which is equal to L.H.S of the given expression.
Hence, we have proved L.H.S = R.H.S of the given expression.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

