
Prove the following statement using the basic trigonometry identities and formulas and the value of different trigonometry function at different arguments $\sin \dfrac{8\pi }{3}\cos \dfrac{23\pi }{6}+\cos \dfrac{13\pi }{3}\sin \dfrac{35\pi }{6}=\dfrac{1}{2}$.
Answer
612.3k+ views
Hint: $\sin x$ is positive in both the first and second quadrant whereas $\cos x$ is positive in the first quadrant and it is negative in the second quadrant. Mathematically, we deduce $\sin \left( 90+\theta \right)=\cos \theta $ and $\cos \left( 90+\theta \right)=\sin \theta $. Using these formulas we will prove $\sin \dfrac{8\pi }{3}\cos \dfrac{23\pi }{6}+\cos \dfrac{13\pi }{3}\sin \dfrac{35\pi }{6}=\dfrac{1}{2}$.
Complete step-by-step answer:
It is given in the question to show that $\sin \dfrac{8\pi }{3}\cos \dfrac{23\pi }{6}+\cos \dfrac{13\pi }{3}\sin \dfrac{35\pi }{6}=\dfrac{1}{2}$. We will use some basic formulas of trigonometry as follows $\sin \left( 90+\theta \right)=\cos \theta $ and $\cos \left( 90+\theta \right)=\sin \theta $. Also we know that
\[\sin x\] is positive in both the first and second quadrant whereas $\cos x$ is positive in the first quadrant and it is negative in the second quadrant.
Now, we have been given expression in the LHS side as $\sin \dfrac{8\pi }{3}\cos \dfrac{23\pi }{6}+\cos \dfrac{13\pi }{3}\sin \dfrac{35\pi }{6}$, we can write it in degree form as $\sin \dfrac{8\times {{180}^{{}^\circ }}}{3}\cos \dfrac{23\times {{180}^{{}^\circ }}}{6}+\cos \dfrac{13\times {{180}^{{}^\circ }}}{3}\sin \dfrac{35\times {{180}^{{}^\circ }}}{6}$ solving the angle values we get $\sin {{480}^{{}^\circ }}\cos {{690}^{{}^\circ }}+\cos {{780}^{{}^\circ }}\sin {{1050}^{{}^\circ }}$. Now we can write $\sin \left( {{480}^{{}^\circ }} \right)$ as $\sin \left( {{90}^{{}^\circ }}\times 5+{{30}^{{}^\circ }} \right)$ and $\cos \left( {{690}^{{}^\circ }} \right)$ as $\cos \left( {{90}^{{}^\circ }}\times 7+{{60}^{{}^\circ }} \right)$, similarly we can write $\cos \left( {{780}^{{}^\circ }} \right)$ as $\cos \left( {{90}^{{}^\circ }}\times 8+{{60}^{{}^\circ }} \right)$ and $\sin \left( {{1050}^{{}^\circ }} \right)$ as $\sin \left( {{90}^{{}^\circ }}\times 11+{{60}^{{}^\circ }} \right)$, therefore we get the expression as $\sin \left( {{90}^{{}^\circ }}\times 5+{{30}^{{}^\circ }} \right)\cos \left( {{90}^{{}^\circ }}\times 7+{{60}^{{}^\circ }} \right)+\cos \left( {{90}^{{}^\circ }}\times 8+{{60}^{{}^\circ }} \right)\sin \left( {{90}^{{}^\circ }}\times 11+{{60}^{{}^\circ }} \right)$.
We know that $\sin \left( 90+\theta \right)=\cos \theta $,$\cos \left( 90+\theta \right)=\sin \theta $ and also $\sin \left( {{90}^{{}^\circ }}\times 11+{{60}^{{}^\circ }} \right)=-\cos \left( {{60}^{{}^\circ }} \right)$ because $\cos \theta $ is negative in the fourth quadrant. Therefore using the above relations we get our expression reduced to $\cos \left( {{30}^{{}^\circ }} \right)\sin \left( {{60}^{{}^\circ }} \right)+\cos \left( {{60}^{{}^\circ }} \right)\left[ -\cos \left( {{60}^{{}^\circ }} \right) \right]$= $\dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\times \left( \dfrac{-1}{2} \right)$ which on solving results in $\dfrac{3}{4}-\dfrac{1}{4}=\dfrac{2}{4}=\dfrac{1}{2}=RHS$ of the given equation.
Hence Proved $\sin \dfrac{8\pi }{3}\cos \dfrac{23\pi }{6}+\cos \dfrac{13\pi }{3}\sin \dfrac{35\pi }{6}=\dfrac{1}{2}$.
Note: Usually students forget the nature of the trigonometric functions in the various quadrants, $\sin x$ is positive in both first and second quadrant whereas $\cos x$ is positive in first quadrant and it is negative in second quadrant. Student may take $\sin \left( {{90}^{{}^\circ }}\times 11+{{60}^{{}^\circ }} \right)=\cos \left( {{60}^{{}^\circ }} \right)$ instead of $\sin \left( {{90}^{{}^\circ }}\times 11+{{60}^{{}^\circ }} \right)=-\cos \left( {{60}^{{}^\circ }} \right)$ which will give us wrong answer and we cannot reach to prove the given statement. Since sine and cosine functions are complementary, therefore we have such a behaviour possible.
Complete step-by-step answer:
It is given in the question to show that $\sin \dfrac{8\pi }{3}\cos \dfrac{23\pi }{6}+\cos \dfrac{13\pi }{3}\sin \dfrac{35\pi }{6}=\dfrac{1}{2}$. We will use some basic formulas of trigonometry as follows $\sin \left( 90+\theta \right)=\cos \theta $ and $\cos \left( 90+\theta \right)=\sin \theta $. Also we know that
\[\sin x\] is positive in both the first and second quadrant whereas $\cos x$ is positive in the first quadrant and it is negative in the second quadrant.
Now, we have been given expression in the LHS side as $\sin \dfrac{8\pi }{3}\cos \dfrac{23\pi }{6}+\cos \dfrac{13\pi }{3}\sin \dfrac{35\pi }{6}$, we can write it in degree form as $\sin \dfrac{8\times {{180}^{{}^\circ }}}{3}\cos \dfrac{23\times {{180}^{{}^\circ }}}{6}+\cos \dfrac{13\times {{180}^{{}^\circ }}}{3}\sin \dfrac{35\times {{180}^{{}^\circ }}}{6}$ solving the angle values we get $\sin {{480}^{{}^\circ }}\cos {{690}^{{}^\circ }}+\cos {{780}^{{}^\circ }}\sin {{1050}^{{}^\circ }}$. Now we can write $\sin \left( {{480}^{{}^\circ }} \right)$ as $\sin \left( {{90}^{{}^\circ }}\times 5+{{30}^{{}^\circ }} \right)$ and $\cos \left( {{690}^{{}^\circ }} \right)$ as $\cos \left( {{90}^{{}^\circ }}\times 7+{{60}^{{}^\circ }} \right)$, similarly we can write $\cos \left( {{780}^{{}^\circ }} \right)$ as $\cos \left( {{90}^{{}^\circ }}\times 8+{{60}^{{}^\circ }} \right)$ and $\sin \left( {{1050}^{{}^\circ }} \right)$ as $\sin \left( {{90}^{{}^\circ }}\times 11+{{60}^{{}^\circ }} \right)$, therefore we get the expression as $\sin \left( {{90}^{{}^\circ }}\times 5+{{30}^{{}^\circ }} \right)\cos \left( {{90}^{{}^\circ }}\times 7+{{60}^{{}^\circ }} \right)+\cos \left( {{90}^{{}^\circ }}\times 8+{{60}^{{}^\circ }} \right)\sin \left( {{90}^{{}^\circ }}\times 11+{{60}^{{}^\circ }} \right)$.
We know that $\sin \left( 90+\theta \right)=\cos \theta $,$\cos \left( 90+\theta \right)=\sin \theta $ and also $\sin \left( {{90}^{{}^\circ }}\times 11+{{60}^{{}^\circ }} \right)=-\cos \left( {{60}^{{}^\circ }} \right)$ because $\cos \theta $ is negative in the fourth quadrant. Therefore using the above relations we get our expression reduced to $\cos \left( {{30}^{{}^\circ }} \right)\sin \left( {{60}^{{}^\circ }} \right)+\cos \left( {{60}^{{}^\circ }} \right)\left[ -\cos \left( {{60}^{{}^\circ }} \right) \right]$= $\dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\times \left( \dfrac{-1}{2} \right)$ which on solving results in $\dfrac{3}{4}-\dfrac{1}{4}=\dfrac{2}{4}=\dfrac{1}{2}=RHS$ of the given equation.
Hence Proved $\sin \dfrac{8\pi }{3}\cos \dfrac{23\pi }{6}+\cos \dfrac{13\pi }{3}\sin \dfrac{35\pi }{6}=\dfrac{1}{2}$.
Note: Usually students forget the nature of the trigonometric functions in the various quadrants, $\sin x$ is positive in both first and second quadrant whereas $\cos x$ is positive in first quadrant and it is negative in second quadrant. Student may take $\sin \left( {{90}^{{}^\circ }}\times 11+{{60}^{{}^\circ }} \right)=\cos \left( {{60}^{{}^\circ }} \right)$ instead of $\sin \left( {{90}^{{}^\circ }}\times 11+{{60}^{{}^\circ }} \right)=-\cos \left( {{60}^{{}^\circ }} \right)$ which will give us wrong answer and we cannot reach to prove the given statement. Since sine and cosine functions are complementary, therefore we have such a behaviour possible.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

